Return to search

Modelos Booleanos no homogéneos. Nuevas metodologí­as, generalizaciones y aplicaciones

El hilo conductor del trabajo realizado en esta tesis doctoral es el estudio de la generalización del modelo booleano al caso no homogéneo (MBNH). Para ello, se han ido planteando diversos objetivos. En primer lugar, la generalización de la función K, propia de la metodología de los modelos germen y grano, a los MBNH nos ha permitido definir una nueva característica de la distribución de probabilidad de estos modelos. En segundo lugar, un nuevo método de estimación de los parámetros de un MBNH particular ha sido planteado y comparado con los métodos existentes en la bibliografía, En tercer lugar, se ha planteado una generalización del modelo al caso espacio temporal, en particular para el caso de no homogeneidad espacial y por último se han estudiado métodos de clasificación no supervisada cuando la información muestral son imágenes binarias, que asumimos realizaciones de diferentes modelos germen y grano conocidos. En todos los trabajos se ha realizado un estudio de simulación para evaluar la adecuación de las metodologías propuestas y se han visto aplicaciones a casos reales. Todos los casos reales fueron planteados por investigadores de otras ramas científicas, motivando el desarrollo de las distintas partes del estudio.
Se han estudiado diferentes aspectos de este modelo, como por ejemplo distintos métodos de estimación de sus parámetros, algunas características de su distribución de probabilidad y su generalización al caso temporal, con la introducción del modelo booleano no homogéneo temporal. Algunos de estos aspectos también podrían aplicarse a los modelos germen y grano en general. También se han estudiado métodos de clasificación no supervisada cuando la información muestral son imágenes binarias y asumimos que son realizaciones de diferentes modelos germen y grano conocidos. En todos los trabajos se ha realizado un estudio de simulación para verificar las nuevas metodologías propuestas que además se han aplicado a casos reales. En todos ellos, este caso real fue el problema inicial que se nos planteó por parte de investigadores de otras ramas científicas y que motivó el estudio.
El hilo conductor del trabajo realizado en esta tesis doctoral es el estudio de una generalización del modelo booleano: el modelo booleano no homogéneo. Se han planteado diferentes objetivos sobre este modelo. Primeramente definir nuevas características de la distribución de probabilidad de un modelo Booleano no homogéneo. Se generaliza la función K para modelos germen y grano en general. Veremos Métodos de estimación de sus parámetros. Con un método nuevo podremos estimar los parámetros de un modelo booleano no homogéneo particular y será comparado con otros métodos ya existentes. Vamos a ver una Generalización al caso espacio temporal. Se generaliza el modelo booleano temporal para el caso en que el espacio no sea homogéneo. También se han estudiado métodos de clasificación no supervisada cuando la información muestral son imágenes binarias y asumimos que son realizaciones de diferentes modelos germen y grano conocidos. Algunos de estos estudios se podrán generalizar a modelos germen y grano en general.

Identiferoai:union.ndltd.org:TDX_UJI/oai:www.tdx.cat:10803/279283
Date29 July 2014
CreatorsGallego Pitarch, María de los Ángeles
ContributorsIbáñez Gual, Ma. Victoria, Simó Vidal, Amelia, Universitat Jaume I. Departament de Matemàtiques
PublisherUniversitat Jaume I
Source SetsUniversitat Jaume I
LanguageSpanish
Detected LanguageSpanish
Typeinfo:eu-repo/semantics/doctoralThesis, info:eu-repo/semantics/publishedVersion
Format156 p., application/pdf
SourceTDX (Tesis Doctorals en Xarxa)
RightsADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs., info:eu-repo/semantics/openAccess

Page generated in 0.0019 seconds