Return to search

Membranas porosas de N,O-carboximetilquitosana/quitosana para aplicação na prevenção de adesões pericárdicas pós-cirúrgicas / Porous membranes of N,O-carboxymethylchitosan/chitosan for applying in the prevention of postsurgical pericardial adhesions

Este trabalho teve como objetivo produzir e caracterizar membranas de quitosana e de N,O-carboximetilquitosana reticuladas, que apresentassem propriedades físicas e químicas adequadas para desempenhar o papel de matriz para proliferação das células mesoteliais. As características estruturais e morfológicas das amostras purificadas de quitosana (amostra Q, adquirida da Yue Planting, China) e carboximetilquitosana na forma sódica (amostra NaCMQH, adquirida da Heppe Medical, Alemanha, e amostra NaCMQD, adquirida da Dayang Chemicals, China) foram investigadas através da espectroscopias de ressonância magnética nuclear e no infravermelho, condutimetria, solubilidade em função do pH e viscosimetria. As membranas de carboximetilquitosanas (amostras M-CMQHs e M-CMQDs) foram confeccionadas via liofilização, e glutaraldeído foi empregado como agente reticulante em diferentes concentrações para avaliar o seu efeito sobre o grau de reticulação e propriedades das membranas. As membranas foram caracterizadas quanto ao grau de reticulação, grau de hidratação, microscopia eletrônica de varredura (MEV), termogravimetria, teste mecânico de tração e quanto a susceptibilidade à degradação enzimática. A amostra Q apresentou grau médio de acetilação (<span style=\"text-decoration: overline\">GA) de 23,60%, sendo solúvel em pH &le; 6,5. A amostra NaCMQH apresentou <span style=\"text-decoration: overline\">GA = 16,32% e grau médio de substituição (<span style=\"text-decoration: overline\">GS) de 1,68, sendo insolúvel no intervalo 2,5 &le; pH &le; 6,5, a amostra de NaCMQD apresentou <span style=\"text-decoration: overline\">GA = 3,31% e <span style=\"text-decoration: overline\">GS = 1,43, sendo insolúvel no intervalo 3,0 &le; pH &le; 7,0. A reticulação das membranas de carboximetilquitosana (amostras M-CMQHs e M-CMQDs) foi realizada com a finalidade de reduzir sua solubilidade e melhorar as propriedades mecânicas. O grau médio de reticulação (<span style=\"text-decoration: overline\">GR) foi tanto maior quanto maior a concentração de glutaraldeído empregada na reação, variando de <span style=\"text-decoration: overline\">GR = 10,39 &plusmn; 0,37% ([glutaraldeído] = 2,5x10-3 mol L-1) a <span style=\"text-decoration: overline\">GR = 62,38 &plusmn; 1,71% ([glutaraldeído] = 5,0x10-3 mol L-1). As características morfológicas das amostras M-Q, M-CMQHs e M-CMQDs foram observadas pelo emprego de MEV, sendo observada a formação de estruturas porosas, com maior quantidade de poros aparentes quanto maior o <span style=\"text-decoration: overline\">GM de 175 poros mm-2 a 291 poros mm-2 com o aumento do grau de reticulação de 12,30% (amostra M-CMQH-2,5) para 35,82%, (amostra M-CMQH-50). A amostra M-Q apresentou baixa taxa de hidratação (321,16 &plusmn; 18,68%) e alto percentual de massa recuperada (90,62 &plusmn; 2,13%) após imersão por 24 horas em solução PBS, quando comparada às amostras M-CMQHs e M-CMQDs. As amostras M-CMQHs e M-CMQDs apresentaram aumento da resistência máxima à tração com o aumento de <span style=\"text-decoration: overline\"> <span style=\"text-decoration: overline\">GR, aumentando de 0,21 &plusmn; 0,16 MPa (amostra M-CMQD-2,5; <span style=\"text-decoration: overline\">GR &asymp; 10,39%) para 0,82 &plusmn; 0,33 MPa (amostra M-CMQH-50; <span style=\"text-decoration: overline\">GR &asymp; 62,38%). Entretanto, amostras com menor <span style=\"text-decoration: overline\">GR apresentaram aumento dos valores de percentual de elongação, sendo que a amostra M-CMQH-2,5 (<span style=\"text-decoration: overline\">GR &asymp; 12,30%) apresentou elongação máxima de 73,08 &plusmn; 2,20%. A amostra M-Q foi pouco susceptível à hidrólise enzimática ([GlcN] = 47x10-4 &plusmn; 1x10-4 mol L-1) devido à baixa solubilidade da quitosana em pH &gt; 6,5. Já com relação ao efeito do <span style=\"text-decoration: overline\">GR, houve redução da taxa de hidrólise enzimática de [GlcN] = 449x10-4 &plusmn; 15x10-4 mol L-1 para [GlcN] = 105x10-4 &plusmn; 11x10-4 mol L-1, quando o <span style=\"text-decoration: overline\">GR aumentou de 12,30% (amostra M-CMQH-2,5) para 28,64% (amostra M-CMQH-25). As amostras M-CMQH-5, M-CMQH-10, M-CMQD-10 e M-CMQD-25 apresentam as propriedades mais adequadas para o emprego como membranas para a prevenção das adesões pericárdicas, pois apresentam superfícies altamente porosas, com baixas taxa de hidratação e de solubilidade, resistência máxima à tração superior a 0,67 MPa, percentual de elongação superior à 30%, e degradação enzimática inferior a [GlcN] = 400x10-4 mol L-1 após 15 dias de incubação. / The aim of this study was to produce and characterize membranes of chitosan and cross-linked N,O-carboxymethylchitosan, displaying appropriate physical and chemical properties to act as matrices for the proliferation of mesothelial cells. The structural and morphological characteristics of the purified samples of chitosan (sample Q, acquired from Yue Planting, China) and sodium carboxymethylchitosan (sample NaCMQH, acquired from Heppe Medical, Germany, and sample NaCMQD, acquired from Dayang Chemicals, China) were determined by nuclear magnetic resonance spectroscopy (NMR1H), infrared spectroscopy, conductometry, viscometry and pH-solubility tests. The carboxymethylchitosan membranes (M-CMQHs and M-CMQDs) were made up by means of lyophilization, with glutaraldehyde being used as a cross-linking agent at different concentrations to evaluate its effect on the cross-linking degree and on the membranes properties. The membranes were characterized in terms of cross-linking degree and hydration rate, by scanning electronic microscopy (SEM), thermogravimetry, ultimate tensile strength and the susceptibility to enzymatic degradation. The sample Q showed average degree of acetylation (<span style=\"text-decoration: overline\">DA) of 23.60%, being soluble at pH &le; 6.5. The sample NaCMQH presented <span style=\"text-decoration: overline\">DA=16.32% and average degree of substitution (<span style=\"text-decoration: overline\">DS) of 1.68, being insoluble in the region of 2.5 &le; pH &le; 6.5. The sample NaCMQD presented <span style=\"text-decoration: overline\">DA=3.31% and <span style=\"text-decoration: overline\">DS=1.43, being insoluble in the region of 3.0 &le; pH &le; 7.0. The cross-linking of carboxymethylchitosan membranes (M-CMQHs and M-CMQDs) was carried out to reduce its solubility and to improve its the physical properties. The higher the glutaraldehyde concentration employed in the reaction, the higher average cross-linking degree (<span style=\"text-decoration: overline\">CD), which ranged from 10.39 &plusmn; 0.37% ([glutaraldehyde] = 2,5x10-3 mol L-1) to 62.38 &plusmn; 1.71% ([glutaraldehyde] = 2,5x10-3 mol L-1). The morphological characteristics of the samples M-Q, M-CMQHs M-CMQDs were observed through SEM, evidencing the formation of porous structures with a larger quantity of apparent pores as <span style=\"text-decoration: overline\">DC increased, ranging from 175 pores mm-2 to 291 pores mm-2 when <span style=\"text-decoration: overline\">DC increased from 12.30% (sample CMQH-M-2.5) to 35.82% (sample M-CMQH-50). The sample M-Q showed low hydration rate (321.16 &plusmn; 18.68%) and high percentage of recovered mass (90.62 &plusmn; 2.13%) after immersion for 24 hours, when compared to samples M-CMQHs and M-CMQDs. Increasing the <span style=\"text-decoration: overline\">DC of the samples M-CMQHs and M-CMQDs resulted in improved mechanical properties as the ultimate tensile strength increased from 0.21 &plusmn; 0.16 MPa (M-CMQD-2.5, <span style=\"text-decoration: overline\">DC &asymp; 10.39%) to 0.82 &plusmn; 0.33 MPa (M-CMQH-50, <span style=\"text-decoration: overline\">DC &asymp; 62.38%). However, those samples with lower <span style=\"text-decoration: overline\">DC values presented an increase in strain at fracture, as the CMQH-M-2.5 sample (<span style=\"text-decoration: overline\">DC &asymp; 12.30%), which registered a strain at fracture of 73.08 &plusmn; 2.20%. The sample M-Q showed a low rate of enzymatic hydrolysis ([GlcN] = 47x10-4 &plusmn; 1x10-4 mol L-1) as a consequence of the low solubility of chitosan at pH &gt; 6.5. Concerning the effects of cross-linked degree, there was a reduction in the enzymatic hydrolysis rate from [GlcN] = 449x10-4 &plusmn; 15x10-4 mol L-1 to [GlcN] = 105x10-4 &plusmn; 11x10-4 mol L-1, when <span style=\"text-decoration: overline\">DC increased from 12.30% (M-CMQH-2.5) to 28.64% (M-CMQH-25). The samples M-CMQH-5, M-CMQH-10, M-CMQD-10 and M-CMQD-25 exhibit appropriate properties to act in the prevention of pericardial adhesions, owing to its highly porous surfaces, low hydration rate and insolubility, ultimate tensile strength exceeding 0.67 MPa, strain at fracture higher than 30% and enzymatic degradation rate lower than [GlcN] = 400x10-4 mol L-1 after 15 days of incubation.

Identiferoai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-17042012-171004
Date16 March 2012
CreatorsFiamingo, Anderson
ContributorsCampana Filho, Sergio Paulo
PublisherBiblioteca Digitais de Teses e Dissertações da USP
Source SetsUniversidade de São Paulo
LanguagePortuguese
Detected LanguageEnglish
TypeDissertação de Mestrado
Formatapplication/pdf
RightsLiberar o conteúdo para acesso público.

Page generated in 0.0036 seconds