Return to search

Investigation of Novel Electrochemical Synthesis of Bioapatites and Use in Elemental Bone Analysis

In this research, electrochemical methods are used to synthesize the inorganic fraction of bone, hydroxyapatite, for application in biological implants and as a calibration material for elemental analysis in human bone. Optimal conditions of electrochemically deposited uniform apatite coatings on stainless steel were investigated. Apatite is a ceramic with many different phases and compositions that have beneficial characteristics for biomedical applications. Of those phases hydroxyapatite (HA) is the most biocompatible and is the primary constituent of the inorganic material in bones. HA coatings on metals and metal alloys have the ability to bridge the growth between human tissues and implant interface, where the metal provides the strength and HA provides the needed bioactivity. The calcium apatites were electrochemically deposited using a modified simulated body fluid adjusted to pH 4-10, for 1-3 hours at varying temperature of 25-65°C while maintaining cathodic potentials of -1.0 to -1.5V. It was observed that the composition and morphology of HA coatings change during deposition by the concentration of counter ions in solution, pH, temperature, applied potential, and post-sintering. The coatings were characterized by powder x-ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy. The precipitated powders from the experiment were also characterized, with results showing similarities to biological apatite. There is a need for quantitative elemental analysis of calcified biological matrices such as bone and teeth; however there are no suitable calibration materials commercially available for quantitative analysis. Matrix-matched standards are electrochemically synthesized for LA-ICP-MS analysis of human bone. The synthetic bioapatite is produced via a hydrothermal electrochemical process using a simulated body fluid solution to form hydroxyapatite. Additional bioapatite standards are synthesized containing trace amounts of metals. The x-ray diffraction of the synthesized standards shows an increase in cell volume for the crystal structure from 0.534 to 0.542 nm3 with the substitution of metals into the crystal structure. The analyte concentration and recoveries for the synthesized standards and reference materials were determined by ICP-MS with % RSD below 6.3% and limits of detection below 1.2 ng/mL for trace metals. The electrochemically synthesized bioapatite was also compared to standard reference materials with X-ray diffraction, FTIR, and Raman spectroscopy. Optimum laser ablation parameters were determined for the standards and human bone. The synthesized standards were homogeneous and the reproducibility for the isotope concentrations determined by LA-ICP-MS was between 3-10 % compared to 10-35% for SRM 1486 Bone Meal and SRM 1486 Bone Ash. A quantitative method has been developed for 2D mapping using LA-ICP-MS and the matrix-matched standards of metal-doped biopaptite to characterize metal concentrations in human bone. Laser ablation parameters for the method are refined resulting in concentration (ug/g) contour map measurements for each isotope measured in the human bone. Essential and non-essential metals, Al, Ca, Cu, Fe, Pb, and Zn are quantitatively mapped using these parameters. Limit of detection for the metals in the bone range from 0.001 to 0.08 ug/g. The LA-ICP-MS analysis method developed proves to be a straightforward and simple method for quantitative analysis of human bone.

Identiferoai:union.ndltd.org:unt.edu/info:ark/67531/metadc177191
Date12 1900
CreatorsDeLeon, Vallerie H.
ContributorsGolden, Teresa D., Verbeck, Guido F., Petros, Rob A., D'Souza, Nandika Anne, 1967-
PublisherUniversity of North Texas
Source SetsUniversity of North Texas
LanguageEnglish
Detected LanguageEnglish
TypeThesis or Dissertation
FormatText
RightsPublic, DeLeon, Vallerie H., Copyright, Copyright is held by the author, unless otherwise noted. All rights Reserved.

Page generated in 0.0027 seconds