On‐chip micro‐supercapacitors (MSCs), as promising power candidates for microdevices, typically exhibit high power density, large charge/discharge rates, and long cycling lifetimes. However, as for most reported MSCs, the unsatisfactory areal energy density (<10 µWh cm−2) still hinders their practical applications. Herein, a new‐type Zn‐ion hybrid MSC with ultrahigh areal energy density and long‐term durability is demonstrated. Benefiting from fast ion adsorption/desorption on the capacitor‐type activated‐carbon cathode and reversible Zn stripping/plating on the battery‐type electrodeposited Zn‐nanosheet anode, the fabricated Zn‐ion hybrid MSCs exhibit remarkable areal capacitance of 1297 mF cm−2 at 0.16 mA cm−2 (259.4 F g−1 at a current density of 0.05 A g−1), landmark areal energy density (115.4 µWh cm−2 at 0.16 mW cm−2), and a superb cycling stability without noticeable decay after 10 000 cycles. This work will inspire the fabrication and development of new high‐performance microenergy devices based on novel device design.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:34563 |
Date | 17 July 2019 |
Creators | Zhang, Panpan, Li, Yang, Wang, Gang, Wang, Faxing, Yang, Sheng, Zhu, Feng, Zhuang, Xiaodong, Schmidt, Oliver G., Feng, Xinliang |
Publisher | WILEY‐VCH |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English, German |
Detected Language | English |
Type | info:eu-repo/semantics/acceptedVersion, doc-type:article, info:eu-repo/semantics/article, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Relation | 10.1002/adma.201806005, info:eu-repo/grantAgreement/European Commission/Horizon2020/604391//Graphene-Based Revolutions in ICT And Beyond/GRAPHENE, info:eu-repo/grantAgreement/European Commission/FP7 | SP2 | ERC/306972//Controlled Synthesis of Two-Dimensional Nanomaterials for Energy Storage and Conversion/2DMATER, info:eu-repo/grantAgreement/European Commission/H2020 | ERC | ERC-POC/768930//Scalable and efficient production of functionalized, high-performance solution-processable graphene-materials/HIPER-G |
Page generated in 0.0019 seconds