Return to search

Kinematic Calibration Of Industrial Robots Using Full Pose Measurements And Optimal Pose Selection

This study focuses on kinematic calibration of industrial robots. Kinematic modeling, parameter
identification and optimal pose selection methods are presented. A computer simulation
of the kinematic calibration is performed using generated measurements with normally distributed
noise. Furthermore, kinematic calibration experiments are performed on an ABB
IRB 6600 industrial robot using full pose measurements taken by a laser tracking system.
The kinematic model of the robot is developed using the modified Denavit - Hartenberg convention.
A nonlinear least-squares method is employed during the parameter identification
stage. According to the experiment results, the initial robot positioning errors are reduced by
more than 80%.

Identiferoai:union.ndltd.org:METU/oai:etd.lib.metu.edu.tr:http://etd.lib.metu.edu.tr/upload/12612829/index.pdf
Date01 January 2011
CreatorsYurttagul, Berk
ContributorsKonukseven, Ilhan Erhan
PublisherMETU
Source SetsMiddle East Technical Univ.
LanguageEnglish
Detected LanguageEnglish
TypeM.S. Thesis
Formattext/pdf
RightsTo liberate the content for public access

Page generated in 0.0014 seconds