Phytoplankton blooms are ecological hotspots in the ocean, and are fundamental to the biogeochemical cycling of elements, the storage of carbon and the ability to regulate the atmospheric carbon dioxide; and the life in the ocean. The South-East Madagascar Bloom, one of the largest blooms in the global ocean, coexists with the poleward flowing South-East Madagascar Current (SEMC), the eastward flowing South Indian Ocean Countercurrent (SICC) as well as westward-propagating surface and subsurface-intensified eddies. This austral summer bloom extends largely towards the open ocean, from the Madagascan coasts up to ~65°E and it exhibits an intriguing interannual variability. A variety of observational datasets as well as a high resolution coupled physical-biogeochemical model, based on CROCOPISCES, are used to explore the biophysical processes associated with the bloom and these westward-propagating eddies. Based on historical observational data, the bloom is shown to occur in a region of shallow mixed layer, with the surface layer exhibiting lower salinity, a possible signature of the coastal poleward flowing SEMC waters. The testing of various hypotheses revealed a dampening of the coastal current-driven upwelling south-east of Madagascar during bloom months. A dipole mesoscale feature is also prevalent close to the Madagascan coast during the bloom, from which a new hypothesis emerges. This new hypothesis states that the region south/south-east of Madagascar, influenced by local mesoscale turbulence, acts as a gate for the SEMC to flow either towards the African continent, or into the bloom region through an early retroflection, hence fertilizing the bloom. The model produces a sporadic enhancement of chlorophyll-a in the subsurface levels, associated with a low-salinity surface signature. The mean local circulation associated with the simulated bloom also reveals a dipole structure, as in observed datasets. Nitrate from subsurface levels (upwelling) as well as from the Madagascan coast (advection) is shown to influence the simulated bloom. A Lagrangian experiment shows dispersion of higher percentages of particles in the bloom region during bloom years and south of Madagascar during non-bloom years. Mesoscale eddies, originating close to Australia and which propagate westward towards southern Africa, can potentially impact the South-East Madagascar Bloom. In this study, a vast majority of these features have been shown to be subsurface-intensified eddies. A co-located eddy tracking dataset with Argo profiling floats are used to devise a subsurface-eddy identification method, which is based on the steric dynamic height anomaly of a specific eddy. Adding to the `eddy-zoo', these eddies are termed `SIDDIES' (South Indian ocean eDDIES), occurring as surface (surfSIDDIES) and subsurface (subSIDDIES) features. They travel along the latitudinal band range of 15°S to 35°S which we name the ‘SIDDIES corridor’. Advecting warm and fresh water during their propagation, cyclonic (anticyclonic) subSIDDIES contribute about 58% (32%) of the total eddy-heat flux in the South Indian Ocean. Anticyclonic subSIDDIES have also been found to be the sole, high-saline water eddy-conveyor towards the western South Indian Ocean. These eddies could also possibly transport nutrients throughout their journey, impacting the biogeochemistry of the ocean near Madagascar.
Identifer | oai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:uct/oai:localhost:11427/29265 |
Date | 01 February 2019 |
Creators | Dilmahamod Ahmad Fehmi |
Contributors | Reason Christopher |
Publisher | University of Cape Town, Faculty of Science, Department of Oceanography |
Source Sets | South African National ETD Portal |
Language | English |
Detected Language | English |
Type | Doctoral Thesis, Doctoral, PhD |
Format | application/pdf |
Page generated in 0.0023 seconds