Return to search

Two-dimensional, intratidal model study of salinity intrusion structure and motion in partially-mixed estuaries (Virginia)

A two-dimensional, longitudinal-vertical model for partially-mixed estuaries has been developed. The model provides intratidal predictions of surface level, velocity, and salinity through a semi-implicit finite-difference solution to the continuity and momentum equations and an explicit finite-difference solution to the salinity equation. The model was verified through comparison with analytical solutions, laboratory data, and prototype data. Following verification, the model was used to simulate the destratification-stratification cycle which occurs in the James River Estuary, Virginia, coincident with the spring-neap tidal cycle. In a second application to the James, a simulation of the movement of the salinity intrusion following a storm-generated freshwater flow pulse was conducted. Investigations were conducted into the reaction of a hypothetical estuary to step-like and pulse-like alterations in wind stress, tide range, boundary conditions and flow. It was noted that the reaction time-scale of the estuary was much longer than the time-scale of alterations in the forcing functions. Thus, in prototype estuaries in which forcing functions are periodic and/or randomly superimposed, truly steady-state conditions are never attained.

Identiferoai:union.ndltd.org:wm.edu/oai:scholarworks.wm.edu:etd-2172
Date01 January 1982
CreatorsCerco, Carl F.
PublisherW&M ScholarWorks
Source SetsWilliam and Mary
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceDissertations, Theses, and Masters Projects
Rights© The Author

Page generated in 0.0012 seconds