The thesis is concerned with local trigonometric regression methods. The aim was to develop a method for extraction of cyclical components in time series. The main results of the thesis are the following.
First, a generalization of the filter proposed by Christiano and Fitzgerald is furnished for the smoothing of ARIMA(p,d,q) process.
Second, a local trigonometric filter is built, with its statistical properties.
Third, they are discussed the convergence properties of trigonometric estimators, and the problem of choosing the order of the model.
A large scale simulation experiment has been designed in order to assess the performance of the proposed models and methods. The results show that local trigonometric regression may be a useful tool for periodic time series analysis.
Identifer | oai:union.ndltd.org:unibo.it/oai:amsdottorato.cib.unibo.it:6494 |
Date | 15 May 2014 |
Creators | Gentile, Maria <1981> |
Contributors | Luati, Alessandra |
Publisher | Alma Mater Studiorum - Università di Bologna |
Source Sets | Università di Bologna |
Language | English |
Detected Language | English |
Type | Doctoral Thesis, PeerReviewed |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.082 seconds