The objective of this research is to develop a new class of miniaturized sensors on-catheter technology through the integration of functional nanomaterials and flexible microsystems, with high sensitivity, fast recovery time, reduced form factor, for in situ blood pressure and flow monitoring with minimal invasiveness. Real-time endovascular pressure measurement techniques are crucial to evaluate the hemodynamics, which indicates the physiological state of the cardiovascular system. Current technology relies on fluid filled catheter coupled to remote transducers to measure endovascular pressures and gradients. The fluid filled catheters are bulky, inherently inaccurate due to the tubing mechanical resonance, and with low signal integrity due to the vibration noises from the environment. Silicon based conventional pressure sensors have complications due to issues of catheter stiffness, biocompatibility or small form factor integration. We propose a paradigm shift in designing the endovascular pressure sensing technology, through developing compact flexible sensing structures using nanoengineered piezoelectric polymers which can be integrated on catheters without consuming the internal lumen space. We focused on designing novel nanostructures using PVDF-TrFE (Polyvinyledene fluoride trifluoroethylene), with well controlled [Beta]-crystalline phase to significantly improve the resulting sensor performance. The research objectives include: (1) Thin-film structures for higher piezoelectric effect without any mechanical stretching or poling requirements, (2) High density highly-aligned electrospun nanofibers through electrospinning towards enhanced sensitivity; (3) Core-shell electrospun nanofiber for tapping the near [Beta]-crystalline phase formation and high cyrstallinity by virtue of inherent stress and stretching involved in the fabrication procedure. For pressure sensor design and characterization, we worked on two main form factors designs: thin-film, and aligned electrospun nanofiber based sensors patterned on catheter tips which are ready to be deployed in intra-vascular environment. Testing results showed promising results from PVDF based pressure sensors. The average sensitivity of the PVDF sensors was found to be four times higher than commercial pressure sensor while the PVDF sensor had five fold shorter response time than commercial pressure sensor, making the PVDF sensors highly suitable for real-time pressure measurements using catheters. / text
Identifer | oai:union.ndltd.org:UTEXAS/oai:repositories.lib.utexas.edu:2152/23461 |
Date | 10 March 2014 |
Creators | Sharma, Tushar |
Source Sets | University of Texas |
Detected Language | English |
Type | Thesis |
Format | application/pdf |
Page generated in 0.002 seconds