Return to search

Photocatalytic activity of titanium dioxide thin films deposited with high power impulse magnetron sputtering

High power impulse magnetron sputtering has shown a lot of promise as a way of depositing photocatalytic thin films of titanium dioxide at low temperatures, however, the films deposited are often amorphous and display uncertain photocatalytic abilities. This thesis explores the deposition and characterization of photocatalytic thin films deposited with high power impulse magnetron sputtering.  Multiple films were deposited with reactive sputtering in both the oxide and metal mode of operations at different temperatures, duty cycles and substrate biases. The crystal structure, microstructure and photocatalytic activity of the samples were then characterized in order to correlate to each other as well as the growth conditions. Crystallinities were determined via a combined use of gracing incidence x-ray diffraction and Raman spectroscopy, microstructures were explored in cross-sectional images taken using scanning electron microscopy and the photocatalytic ability was measured by quantifying the rate constant during degradation of stearic acid while under UV-illumination.  It was found that the crystal structure of the sputtered films was influenced by the deposition mode used: oxide mode depositions yielded an anatase structure while metal mode depositions resulted in rutile or mixed structures. The only crystalline films were formed with substrate heating, the application of bias was found to correlate with the formation of more rutile and the most crystalline films were deposited with a higher duty cycle.  Photocatalytic films were successfully deposited at room temperature, even though they were amorphous. Interestingly, the anatase samples were not found to be the most reactive, instead it was found that the crystal structure only displayed a weak correlation to the reactivity of the films. The findings in this work suggest that the reactivity was also heavily influenced by the surface roughness of the samples as well as their microstructures.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-448105
Date January 2021
CreatorsEriksson, Victor
PublisherUppsala universitet, Fasta tillståndets elektronik
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationUPTEC K, 1650-8297 ; 21039

Page generated in 0.0075 seconds