L'effet Kondo observé dans des objets individuels constitue un système modèle pour l’étude de corrélations électroniques. Ces dernières jouent un rôle moteur dans le domaine émergent de l'électronique de spin (ou spintronique) où l’utilisation d’atomes issus des terres rares et des métaux de transition est incontournable. Dans ce contexte, l’étude de l'interaction d’une impureté Kondo avec des électrodes ferromagnétiques ou avec d’autres impuretés magnétiques peut donc s’avérer fondamental pour la spintronique. L’effet Kondo est sensible à son environnement magnétique car en présence d’interactions magnétiques la résonance ASK se dédouble. Dans une certaine mesure, la résonance ASK agit comme un niveau atomique discret doublement dégénérée qui subit un dédoublement Zeeman en présence d'un champ magnétique ou plus généralement d’un champ magnétique effectif. Inversement, la détection d'un dédoublement Zeeman indique l'existence d'un champ magnétique. Dans une boîte quantique, le couplage de la boîte avec les deux électrodes est faible en général et la largeur de la résonance ASK est donc de l'ordre de quelques meV. Beaucoup d’études de l’effet Kondo en présence d’interactions magnétiques ont été menées sur les boîtes quantiques, grâce notamment au contrôle qui peut être exercé sur la résonance ASK, mais aussi grâce au faible élargissement de la résonance qui peut alors être dédoublée avec un champ magnétique de l’ordre de 10 Tesla ou moins. A ces études, s’ajoutent de nombreux travaux similaires menés avec des dispositifs tels des jonctions cassées comprenant une molécule individuelle jouant le rôle de l’impureté magnétique. En revanche, peu d’études de ce type ont été consacrées aux atomes individuels. Cela est dû à l’hybridation plus marquée entre l'impureté atomique et la surface comparée aux boîtes quantiques, qui entraine une largeur typique de 10 meV ou plus pour la résonance ASK. Un champ magnétique d'environ 100 T ou plus est alors nécessaire afin de dédoubler la résonance et donc en pratique difficile à mettre en oeuvre. Cette thèse est consacrée précisément à l’étude de l'interaction entre une impureté Kondo individuel et son environnement magnétique à l’aide d’un STM. Une nouvelle stratégie est adoptée ici par rapport aux études antérieures de ce genre. Tout d'abord, nous éliminons la barrière tunnel en établissons un contact pointe-atome. Nous formons ainsi un point de contact quantique comprenant une seule impureté Kondo. Deuxièmement, nous utilisons des pointes ferromagnétiques. Le contact pointe-atome permet de sonder l'influence du ferromagnétisme sur l'impureté Kondo vial’observation de la résonance ASK. La géométrie de contact permet tout particulièrement de produire une densité de courant polarisé en spin suffisamment élevée pour qu’elle entraîne un dédoublement de la résonance ASK. Ce dédoublement constitue la première observation à l’échelle atomique d’un phénomène connu sous le nom d’accumulation de spin, laquelle se trouve être une propriété fondamentale de la spintronique. / The Kondo effect of these single objects represents a model system to study electron correlations, which are nowadays of importance in relation to the emerging field of spin electronics, also known as spintronics, where chemical elements with partially filled d or f shells play a central role. Also of particular interest to spintronics is the interaction of single Kondo impurities with ferromagnetic leads or with other magnetic impurities. A Kondo impurity is in fact sensitive to its magnetic environment as the ASK resonance is usually split into two resonances in the presence of magnetic interactions. To some extent, the ASK resonance acts as a two-fold degenerate energy level of an atom which undergoes a Zeeman splitting in the presence of an effective magnetic field. Conversely, the detection of a Zeeman splitting indicates the existence of a magnetic field. In a QD, the coupling of the QD to the two leads is very weak in general, and the Kondo resonance is in the range of a few meV. Many studies focusing on magnetic interaction have been carried out on QDs, due to the high control that can be extended to the ASK resonance and its low energy range, allowing to split the resonance with a magnetic field of 10 T. Similar work has also been carried out in single-molecule or lithographically-defined devices. Although STM is an ideal tool to study the Kondo effect of single atoms, there is still a strong lack of experimental studies concerning atoms in the presence of magnetic interactions. This is partly due to the stronger impurity-metal hybridization compared to QDs, which places the ASK width in the range of 10 meV. An effective magnetic field of 100 T would be needed to split the resonance. The present Thesis is devoted precisely at studying the interaction between a single Kondo impurity with its magnetic environment through STM. A new strategy is adopted herecompared to former studies of this kind. Firstly, we contact a single-magnetic atom on a surface with a STM tip thereby eliminating the vacuum barrier. Secondly, we use ferromagnetic tips. The contact with a single atom allows probing the influence of ferromagnetism on the Kondo impurity i. e. its ASK resonance. But most importantly, the contact geometry produces sufficiently high current densities compared to the tunneling regime, so that the ASK resonance becomes sensitive to the presence of a spin-polarized current. This constitutes the first atomic scale detection of a spin-polarized current with a single Kondo impurity.
Identifer | oai:union.ndltd.org:theses.fr/2012STRAE029 |
Date | 01 June 2012 |
Creators | Choi, Deung jang |
Contributors | Strasbourg, Bucher, Jean-Pierre |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0028 seconds