This thesis addresses the experimental investigation of the cavitation phenomenon and its main consequences on the normal operation of a safety relief valve (SRV). More particularly, limitation of the mass flux discharged and alteration of the hydraulic fluid forces behavior is of main interest for the proper design and sizing of such devices. In nuclear or thermal engineering systems, the use of SRVs is mandatory since it represents the ultimate protection device before an accident occurs, caused by a sudden pressurization of the system. A careful design and sizing of the SRV is therefore essential. The complete understanding of the physics taking place in the flow through the valve is required to guaranty and optimize the security of the protected process.<p><p>In order to investigate the above effects of cavitation in a SRV, two different orifice sized valves (API 2J3 type and a transparent model based on an API 1 1/2G3 type) are tested in two different experimental facilities expressly built for this purpose. Instead of using a spring, the design of both valves allows the adjustment of the disc at any desired lift. Hence the static behavior of the valves is investigated. Both facilities, operating at different magnitude scales, allow the study of single phase and cavitating flow conditions required to properly determine the most important hydraulic characteristics, and access on any potential scaling effect between both sized SRVs. Experimental techniques used for the determination of the hydraulic characteristics include temperature, flow rate, fluid forces and pressure measurements both upstream and downstream the test sections. <p><p>Results show a similar influence of cavitation on the flow characteristics of both valves, minimizing any potential scaling effect. The liquid pressure recovery factor FL, which is normally used to identify a choked flow condition in a control valve, is experimentally determined for the first time in a SRV. The existence of a local minimum located at small openings of the lift indicates a change on the flow characteristics of both valves, which is related to the location of the minimum cross section of the flow that does not remain constant for every lift position. An extended experimental campaign is performed to analyse the effect of the blowdown ring adjustment located around the nozzle of the API 2J3 valve. Results confirm that the position of the ring has an important contribution for the hydraulic forces acting on the valve disc. <p><p>In the second part of the research, precise optical diagnostic techniques are successfully applied in the transparent valve to locally characterize the flow topology in a SRV experiencing cavitation. These results are innovative and enrich the experimental database available in the literature for the characterization and understanding of the flow physics in such devices. In a first configuration, high speed visualization is applied to observe qualitatively the flow pattern and the inception of liquid vaporization. Particle tracking results suggest that vapor bubbles are formed in the core of vortices detached from the shear layers attached to the valve. These rotational structures promote lower pressure regions allowing the liquid to vaporize. In the second configuration, particle image velocimetry is applied to extract the velocity field in both single phase and cavitating flow conditions. Results of PIV confirm the existence of a submerged jet just downstream the minimum section. This jet is characterized by two non-symmetric shear layers at its sides. Under cavitation conditions, PIV results confirm that vapor bubbles are formed preferentially inside the jet shear layers. The phenomenon of mass flux limitation caused by cavitation is reproduced at small openings of the valve and interaction with the flow topology is highlighted. It is observed that limitation of the flow occurs when the vena contracta is shifted towards the minimum geometrical section of the flow. Finally, instabilities of the flow downstream the critical section are investigated in the frequency domain by means of time resolved data. Results suggest that vortex shedding mechanism is dominated by a constant Strouhal number which is slightly affected by the valve opening. <p><p>In the last part of the research, the methodology used in water is extended and applied to cryogenic liquids. Two different geometries are investigated experimentally and numerically using water and liquid nitrogen as working fluids. Results suggest that both the flow coefficient (determined at single flow conditions), and the liquid recovery factor (used to identify choked flows), are independent on the fluid properties and therefore, an hydraulic similarity relation can be proposed.<p><p>This research project was carried out at the von Karman Institute for Fluid Dynamics (VKI), in Belgium, in close collaboration and with the funding of Centre Technique des Industries Mécaniques (CETIM) in France. / Doctorat en Sciences de l'ingénieur / info:eu-repo/semantics/nonPublished
Identifer | oai:union.ndltd.org:ulb.ac.be/oai:dipot.ulb.ac.be:2013/209095 |
Date | 27 April 2015 |
Creators | Pinho, Jorge |
Contributors | Buchlin, Jean-Marie, Chabane, Saïd, Haut, Benoît, Hendrick, Patrick, Couzinet, Anthony, Chabane, Saïd, Rambaud, Patrick, Dossena, Vincenzo, Debaste, Frédéric |
Publisher | Universite Libre de Bruxelles, Université libre de Bruxelles, Ecole polytechnique de Bruxelles – Mécanicien, Bruxelles |
Source Sets | Université libre de Bruxelles |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/doctoralThesis, info:ulb-repo/semantics/doctoralThesis, info:ulb-repo/semantics/openurl/vlink-dissertation |
Format | No full-text files |
Page generated in 0.003 seconds