Long-term hot-carrier induced degradation of MOS devices has become more severe as the device size continues to scale down to submicron range. In our work, a simple yet effective method has been developed to provide the degradation laws with a better predictability. The method can be easily augmented into any of the existing degradation laws without requiring additional algorithm. With more accurate extrapolation method, we present a direct and accurate approach to modeling empirically the 0.18-ìm MOS reliability, which can predict the MOS lifetime as a function of drain voltage and channel length. With the further study on physical mechanism of MOS device degradation, experimental results indicated that the widely used power-law model for lifetime estimation is inaccurate for deep submicron devices. A better lifetime prediction method is proposed for the deep-submicron devices. We also develop a Spice-like reliability model for advanced radio frequency RF MOS devices and implement our reliability model into SpectreRF circuit simulator via Verilog-A HDL (Hardware Description Language). This RF reliability model can be conveniently used to simulate RF circuit performance degradation
Identifer | oai:union.ndltd.org:ucf.edu/oai:stars.library.ucf.edu:etd-1299 |
Date | 01 January 2005 |
Creators | Cui, Zhi |
Publisher | STARS |
Source Sets | University of Central Florida |
Language | English |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Electronic Theses and Dissertations |
Page generated in 0.0018 seconds