With recent research advances, the dream of bringing domestic robots into our everyday lives has become more plausible than ever. Domestic robotics has grown dramatically in the past decade, with applications ranging from house cleaning to food service to health care. To date, the majority of the planning and control machinery for these systems are carefully designed by human engineers. A large portion of this effort goes into selecting the appropriate models and control techniques for each application, and these skills take years to master. Relieving the burden on human experts is therefore a central challenge for bringing robot technology to the masses.
This work addresses this challenge by introducing a physics engine as a model space for an autonomous robot, and defining procedures for enabling robots to decide when and how to learn these models. We also present an appropriate space of motor controllers for these models, and introduce ways to intelligently select when to use each controller based on the estimated model parameters. We integrate these components into a framework called Physics-Based Reinforcement Learning, which features a stochastic physics engine as the core model structure. Together these methods enable a robot to adapt to unfamiliar environments without human intervention.
The central focus of this thesis is on fast online model learning for objects with under-specified dynamics. We develop our approach across a diverse range of domestic tasks, starting with a simple table-top manipulation task, followed by a mobile manipulation task involving a single utility cart, and finally an open-ended navigation task with multiple obstacles impeding robot progress. We also present simulation results illustrating the efficiency of our method compared to existing approaches in the learning literature.
Identifer | oai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/54366 |
Date | 07 January 2016 |
Creators | Scholz, Jonathan |
Contributors | Isbell, Charles |
Publisher | Georgia Institute of Technology |
Source Sets | Georgia Tech Electronic Thesis and Dissertation Archive |
Language | en_US |
Detected Language | English |
Type | Dissertation |
Format | application/pdf |
Page generated in 0.002 seconds