Return to search

Properties of the Discrete and Continuous Spectrum of Differential Operators

This thesis contains three scientific papers devoted to the study of different spectral theoretical aspects of differential operators in Hilbert spaces.The first paper concerns the magnetic Schrödinger operator (i∇ + A)2 in L2(ℝn). It is proved that given certain conditions on the decay of A, the set [0,∞) is an essential support of the absolutely continuous part of the spectral measure corresponding to the operator.The second paper considers a regular d-dimensional metric tree Γ and defines Schrödinger operators - Δ - V on it.  Here, V is a symmetric, non-negative potential on Γ. It is assumed that V decays like lxl-Γ at infinity, where 1 < γ ≤ d ≤2, γ ≠ 2. A weak coupling constant α is introduced in front of V, and the asymptotics of the bottom of the spectrum as α → 0+ is described.The third, and last, paper revolves around fourth-order differential operators in the space L2(ℝn), where n = 1 or n = 3.  In particular, the operator (-Δ)2 - C|x|-4 - V(x) is studied, where C is the sharp constant in the Hardy-Rellich inequality. A Lieb-Thirring inequality for this operator is proved, and as a consequence a Sobolev-type inequality is obtained. / QC 20100712

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-9981
Date January 2009
CreatorsEnblom, Andreas
PublisherKTH, Matematik (Inst.), Stockholm : KTH
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTrita-MAT. MA, 1401-2278 ; 09:02

Page generated in 0.0018 seconds