Humans perceive the world in three dimensions, but many sensing capabilities only display two-dimensional information to users by way of images. In this work we develop two novel reconstruction techniques utilizing synthetic aperture radar (SAR) data in three dimensions given sparse amounts of available data. We additionally leverage a hybrid joint-sparsity and sparsity approach to remove a-priori influences on the environment and instead explore general imaging properties in our reconstructions. We evaluate the required sampling rates for our techniques and a thorough analysis of the accuracy of our methods. The results presented in this thesis suggest a solution to sparse three-dimensional object reconstruction that effectively uses a substantially less amount of phase history data (PHD) while still extracting critical features off an object of interest.
Identifer | oai:union.ndltd.org:MSSTATE/oai:scholarsjunction.msstate.edu:td-6220 |
Date | 06 August 2021 |
Creators | Jamora, Jan Rainer |
Publisher | Scholars Junction |
Source Sets | Mississippi State University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Theses and Dissertations |
Page generated in 0.0019 seconds