Return to search

Structural testing of an ultralight UAV composite wing and fuselage

The details of an experimental investigation focusing on obtaining the static and vibration characteristics of a full-scale carbon composite wing and fuselage structural assemblies of an ultralight unmanned aerial vehicle (UAV) are presented. The UAV has a total empty weight of 155-lb and an overall length of approximately 20.6t. A three-tier whiffletree system and the tail fixture were designed and used to load the wing and the fuselage in a manner consistent with a high-g flight condition. A shaker-table approach was used for the wing vibration testing, whereas the modal characteristics of the fuselage structure were determined for a freeree configuration. The static responses of the both structures under simulated loading conditions as well as their dynamic properties such as the natural frequency, damping coefficient and associated mode shapes were obtained. The design and implementation of the static and vibration tests along with the experimental results are presented in this thesis.

Identiferoai:union.ndltd.org:MSSTATE/oai:scholarsjunction.msstate.edu:td-5085
Date02 May 2009
CreatorsSimsiriwong, Jutima
PublisherScholars Junction
Source SetsMississippi State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceTheses and Dissertations

Page generated in 0.0015 seconds