Return to search

Predictive Energy Management of Long-Haul Hybrid Trucks : Using Quadratic Programming and Branch-and-Bound

This thesis presents a predictive energy management controller for long-haul hybrid trucks. In a receding horizon control framework, the vehicle speed reference, battery energy reference, and engine on/off decision are optimized over a prediction horizon. A mixed-integer quadratic program (MIQP) is formulated by performing modelling approximations and by including the binary engine on/off decision in the optimal control problem. The branch-and-bound algorithm is applied to solve this problem. Simulation results show fuel consumption reductions between 10-15%, depending on driving cycle, compared to a conventional truck. The hybrid truck without the predictive control saves significantly less. Fuel consumption is reduced by 3-8% in this case. A sensitivity analysis studies the effects on branch-and-bound iterations and fuel consumption when varying parameters related to the binary engine on/off decision. In addition, it is shown that the control strategy can maintain a safe time gap to a leading vehicle. Also, the introduction of the battery temperature state makes it possible to approximately model the dynamic battery power limitations over the prediction horizon. The main contributions of the thesis are the MIQP control problem formulation, the strategy to solve this with the branch-and-bound method, and the sensitivity analysis.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-178224
Date January 2021
CreatorsJonsson Holm, Erik
PublisherLinköpings universitet, Fordonssystem
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0021 seconds