Return to search

Partition identity bijections related to sign-balance and rank

Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mathematics, 2005. / Includes bibliographical references (p. 81-83). / In this thesis, we present bijections proving partitions identities. In the first part, we generalize Dyson's definition of rank to partitions with successive Durfee squares. We then present two symmetries for this new rank which we prove using bijections generalizing conjugation and Dyson's map. Using these two symmetries we derive a version of Schur's identity for partitions with successive Durfee squares and Andrews' generalization of the Rogers-Ramanujan identities. This gives a new combinatorial proof of the first Rogers-Ramanujan identity. We also relate this work to Garvan's generalization of rank. In the second part, we prove a family of four-parameter partition identities which generalize Andrews' product formula for the generating function for partitions with respect number of odd parts and number of odd parts of the conjugate. The parameters which we use are related to Stanley's work on the sign-balance of a partition. / by Cilanne Emily Boulet. / Ph.D.

Identiferoai:union.ndltd.org:MIT/oai:dspace.mit.edu:1721.1/31162
Date January 2005
CreatorsBoulet, Cilanne Emily
ContributorsRichard P. Stanley., Massachusetts Institute of Technology. Dept. of Mathematics., Massachusetts Institute of Technology. Dept. of Mathematics.
PublisherMassachusetts Institute of Technology
Source SetsM.I.T. Theses and Dissertation
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Format83 p., 3562507 bytes, 3571381 bytes, application/pdf, application/pdf, application/pdf
RightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission., http://dspace.mit.edu/handle/1721.1/7582

Page generated in 0.0021 seconds