Return to search

Conical Representations for Direct Limits of Riemannian Symmetric Spaces.

We extend the definition of conical representations for Riemannian symmetric space to a certain class of infinite-dimensional Riemannian symmetric spaces. Using an infinite-dimensional version of Weyl's Unitary Trick, there is a correspondence between smooth representations of infinite-dimensional noncompact-type Riemannian symmetric spaces and smooth representations of infinite-dimensional compact-type symmetric spaces. We classify all smooth conical representations which are unitary on the compact-type side. Finally, a new class of non-smooth unitary conical representations appears on the compact-type side which has no analogue in the finite-dimensional case. We classify these representations and show how to decompose them into direct integrals of irreducible conical representations.

Identiferoai:union.ndltd.org:LSU/oai:etd.lsu.edu:etd-07112014-182603
Date29 July 2014
CreatorsDawson, Matthew Glenn
ContributorsOlafsson, Gestur, Sengupta, Ambar N., He, Hongyu, Perlis, Robert V., Smolinsky, Lawrence J., Legoria, Joseph
PublisherLSU
Source SetsLouisiana State University
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lsu.edu/docs/available/etd-07112014-182603/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached herein a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to LSU or its agents the non-exclusive license to archive and make accessible, under the conditions specified below and in appropriate University policies, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0016 seconds