L'objectif de ce travail est de proposer une solution de reconnaissance de l'impact émotionnel des images en se basant sur les techniques utilisées en recherche d'images par le contenu. Nous partons des résultats intéressants de cette architecture pour la tester sur une tâche plus complexe. La tâche consiste à classifier les images en fonction de leurs émotions que nous avons définies "Négative", "Neutre" et "Positive". Les émotions sont liées aussi bien au contenu des images, qu'à notre vécu. On ne pourrait donc pas proposer un système de reconnaissance des émotions performant universel. Nous ne sommes pas sensible aux mêmes choses toute notre vie : certaines différences apparaissent avec l'âge et aussi en fonction du genre. Nous essaierons de nous affranchir de ces inconstances en ayant une évaluation des bases d'images la plus hétérogène possible. Notre première contribution va dans ce sens : nous proposons une base de 350 images très largement évaluée. Durant nos travaux, nous avons étudié l'apport de la saillance visuelle aussi bien pendant les expérimentations subjectives que pendant la classification des images. Les descripteurs, que nous avons choisis, ont été évalués dans leur majorité sur une base consacrée à la recherche d'images par le contenu afin de ne sélectionner que les plus pertinents. Notre approche qui tire les avantages d'une architecture bien codifiée, conduit à des résultats très intéressants aussi bien sur la base que nous avons construite que sur la base IAPS, qui sert de référence dans l'analyse de l'impact émotionnel des images. / The goal of this work is to propose an efficient approach for emotional impact recognition based on CBIR techniques (descriptors, image representation). The main idea relies in classifying images according to their emotion which can be "Negative", "Neutral" or "Positive". Emotion is related to the image content and also to the personnal feelings. To achieve our goal we firstly need a correct assessed image database. Our first contribution is about this aspect. We proposed a set of 350 diversifed images rated by people around the world. Added to our choice to use CBIR methods, we studied the impact of visual saliency for the subjective evaluations and interest region segmentation for classification. The results are really interesting and prove that the CBIR methods are usefull for emotion recognition. The chosen desciptors are complementary and their performance are consistent on the database we have built and on IAPS, reference database for the analysis of the image emotional impact.
Identifer | oai:union.ndltd.org:theses.fr/2014POIT2295 |
Date | 21 November 2014 |
Creators | Gbehounou, Syntyche |
Contributors | Poitiers, Fernandez-Maloigne, Christine, Lecellier, François |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text, Image, StillImage |
Page generated in 0.0025 seconds