Many next-generation e-science applications require fast and reliable transfer of large volumes of data, now frequently termed as ``big data", with guaranteed performance, which is typically enabled by the bandwidth reservation service in high-performance networks (HPNs). Users normally specify the properties and requirements of their data transfers in the bandwidth reservation requests (BRRs), and want to make bandwidth reservations on the HPNs to satisfy the requirements of their data transfers. The challenges of the bandwidth reservation arise from the requirements desired by both the users and the bandwidth reservation service providers of the HPNs. We focus on two important bandwidth reservation problems formulated from the combinations of the requirements from both users and the bandwidth reservation service providers of the HPNs: (i) Problem of scheduling all BRRs in one batch while achieving their best average data transfer earliest completion time and shortest duration, and (ii) Problem of scheduling two generic types of BRRs concerning data transfer reliability with different objectives and constraints in unreliable HPNs that are subject to node and link failures. We prove the two subproblems of the first problem are NP-complete problems, and fast and efficient heuristic algorithms are proposed. While the two subproblems of the second problem can be optimally solved in polynomial time. The corresponding optimal algorithms and proofs are given. We conduct extensive simulations to compare the performance of the proposed heuristic and optimal algorithms with naive scheduling algorithms and the algorithms currently used in production network in various performance metrics. The performance superiority of the proposed heuristic and optimal algorithms is verified.
Identifer | oai:union.ndltd.org:siu.edu/oai:opensiuc.lib.siu.edu:dissertations-2059 |
Date | 01 August 2015 |
Creators | Zuo, Liudong |
Publisher | OpenSIUC |
Source Sets | Southern Illinois University Carbondale |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Dissertations |
Page generated in 0.0018 seconds