>Magister Scientiae - MSc / The burial history, thermal maturity and petroleum generation history of the F-O Gas Field, Bredasdorp Basin have been studied using 3D basin and petroleum systems modelling approach. The investigated sedimentary basin for this study evolved around mid-late Jurassic to early Cretaceous times when Southern Africa rifted from South America. The F-O field is located 40 km SE of the F-A platform which supplies gas and condensate to the PetroSA ‘Gas to Liquid’ plant located in Mossel Bay. As data integration is an integral part of the applied modelling concept, 2D seismic profile and well data (i.e. logs and reports from four drilled wells) were integrated into a 3D structural model of the basin. Four source rock intervals (three from the Early Cretaceous stages namely; Hauterivian, Barremian, Aptian and one from the Late Cretaceous Turonian stage) were incorporated into the 3D model for evaluating source rock maturation and petroleum generation potential of the F-O Gas Field. Additionally, measured present-day temperature, vitrinite reflectance, source potential data, basin burial and thermal history and timing of source rock maturation, petroleum generation and expulsion were forwardly simulated using a 3D basin modelling technique. At present-day, Turonian source rock is mainly in early oil (0.55-0.7% VRo) window, while the Aptian and Barremian source rocks are in the main oil (0.7-1.0% VRo) window, and the Hauterivian source rock is mainly in the main oil (0.7-1.0% VRo) to late oil (1.0-1.3% VRo) window. In the entire four source rock intervals the northern domain of the modelled area show low transformation, indicated by low maturity values that are attributable to less overburden thickness. Petroleum generation begins in later part of Early Cretaceous, corresponding to high heat flow and rapid subsidence/ sedimentation rates. The Barremian and Aptian source rocks are the main petroleum generators, and both shows very high expulsion efficiencies. The modelling results however indicate that the younger Aptian source rock could be regarded as the best source rock out of the four modelled source rocks in the F-O field due to its quantity (i.e. highest TOC of 3%), quality (Type II with HI values of 400) and highest remaining potential. At present-day, ~1209 Mtons of hydrocarbons were cumulatively generated and peak generation occurred at ~43 Ma with over 581 Mtons generated. Finally, the results of this study can directly be applied for play to prospect risk analysis of the F-O gas field.
Identifer | oai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:uwc/oai:etd.uwc.ac.za:11394/5340 |
Date | January 2015 |
Creators | Ramphaka, Lerato Priscilla |
Contributors | Chatterjee, Tapas, Sonibare, Wasiu A. |
Publisher | University of the Western Cape |
Source Sets | South African National ETD Portal |
Language | English |
Detected Language | English |
Type | Thesis |
Rights | University of the Western Cape |
Page generated in 0.0017 seconds