This project deals with automatic recognition of facial expression in colour pictures. At first, the colour-based face detection is accomplished, three colour spaces are used: RGB, HSV and YCbcCr. As next, the pictures are automatically cropped so that only the face region is present. It is accomplished by computing the borders of the face region based on knowledge of position of eyes, nose and mouth. From the face region, the feature vector is obtained using a bank of Gabor filters. The project introduces two different kinds of Gabor filters and proposes a new bank of filters. The feature vector is used as an input to the neural network. The neural network was trained on a set of pictures from AR database created for facial expression recognition. The output of the network is the facial expression the input picture was assigned to. This project mentions the testing for different settings of the neural network and presents and discuss the recognition results of the network.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:242106 |
Date | January 2016 |
Creators | Vránová, Markéta |
Contributors | Odstrčilík, Jan, Mézl, Martin |
Publisher | Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.002 seconds