Return to search

Example-based water animation

We present the argument that video footage of real scenes can be used as input examples from which novel three-dimensional scenes can be created. We argue that the parameters used by traditional animation techniques based on the underlying physical properties of the water, do not intuitively relate to the resulting visual appearance. We will present a novel approach which allows a range of video examples to be used as a set of visual parameters to design the visible behaviour of a water animation directly. Our work begins with a method for reconstructing the perceived water surface geometry from video footage of natural scenes, captured with only a single static camera. We show that this has not been accomplished before, because previous approaches use sophisticated capturing systems which are limited to a laboratory environment. We will also present an approach for reconstructing the water surface velocities which are consistent with the reconstructed geometry. We then present a method of using these water surface reconstructions as building blocks which can be seamlessly combined to create novel water surface animations. We are also able to extract foam textures from the videos, which can be applied to the water surfaces to enhance their visual appearance. The surfaces we produce can be shaped and curved to fit within a user's three-dimensional scene, and the movement of external objects can be driven by the velocity fields. We present a range of results which show that our method can plausibly emulate a wide range of real-world scenes, different from those from which the water characteristics were captured. As the animations we create are fully three-dimensional, they can be rendered from any viewpoint, in any rendering style.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:607612
Date January 2013
CreatorsPickup, David Lemor
ContributorsHall, Peter
PublisherUniversity of Bath
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation

Page generated in 0.0016 seconds