Return to search

Performance Envelopes of Adaptive Ensemble Data Stream Classifiers

This dissertation documents a study of the performance characteristics of algorithms designed to mitigate the effects of concept drift on online machine learning. Several supervised binary classifiers were evaluated on their performance when applied to an input data stream with a non-stationary class distribution. The selected classifiers included ensembles that combine the contributions of their member algorithms to improve overall performance. These ensembles adapt to changing class definitions, known as “concept drift,” often present in real-world situations, by adjusting the relative contributions of their members. Three stream classification algorithms and three adaptive ensemble algorithms were compared to determine the capabilities of each in terms of accuracy and throughput. For each< run of the experiment, the percentage of correct classifications was measured using prequential analysis, a well-established methodology in the evaluation of streaming classifiers. Throughput was measured in classifications performed per second as timed by the CPU clock. Two main experimental variables were manipulated to investigate and compare the range of accuracy and throughput exhibited by each algorithm under various conditions. The number of attributes in the instances to be classified and the speed at which the definitions of labeled data drifted were varied across six total combinations of drift-speed and dimensionality. The implications of results are used to recommend improved methods for working with stream-based data sources. The typical approach to counteract concept drift is to update the classification models with new data. In the stream paradigm, classifiers are continuously exposed to new data that may serve as representative examples of the current situation. However, updating the ensemble classifier in order to maintain or improve accuracy can be computationally costly and will negatively impact throughput. In a real-time system, this could lead to an unacceptable slow-down. The results of this research showed that,among several algorithms for reducing the effect of concept drift, adaptive decision trees maintained the highest accuracy without slowing down with respect to the no-drift condition. Adaptive ensemble techniques were also able to maintain reasonable accuracy in the presence of drift without much change in the throughput. However, the overall throughput of the adaptive methods is low and may be unacceptable for extremely time-sensitive applications. The performance visualization methodology utilized in this study gives a clear and intuitive visual summary that allows system designers to evaluate candidate algorithms with respect to their performance needs.

Identiferoai:union.ndltd.org:nova.edu/oai:nsuworks.nova.edu:gscis_etd-2016
Date01 January 2017
CreatorsJoe-Yen, Stefan
PublisherNSUWorks
Source SetsNova Southeastern University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceCEC Theses and Dissertations

Page generated in 0.0019 seconds