Return to search

Network Traffic Control Based on Modern Control Techniques: Fuzzy Logic and Network Utility Maximization

This thesis presents two modern control methods to address the Internet traffic congestion control issues. They are based on a distributed traffic management framework for the fast-growing Internet traffic in which routers are deployed with intelligent or optimal data rate controllers to tackle the traffic mass.
The first one is called the IntelRate (Intelligent Rate) controller using the fuzzy logic theory. Unlike other explicit traffic control protocols that have to estimate network parameters (e.g., link latency, bottleneck bandwidth, packet loss rate, or the number of flows), our fuzzy-logic-based explicit controller can measure the router queue size directly. Hence it avoids various potential performance problems arising from parameter estimations while reducing much computation and memory consumption in the routers. The communication QoS (Quality of Service) is assured by the good performances of our scheme such as max-min fairness, low queueing delay and good robustness to network dynamics. Using the Lyapunov’s Direct Method, this controller is proved to be globally asymptotically stable.
The other one is called the OFEX (Optimal and Fully EXplicit) controller using convex optimization. This new scheme is able to provide not only optimal bandwidth allocation but also fully explicit congestion signal to sources. It uses the congestion signal from the most congested link, instead of the cumulative signal from a flow path. In this way, it overcomes the drawback of the relatively explicit controllers that bias the multi-bottlenecked users, and significantly improves their convergence speed and throughput performance. Furthermore, the OFEX controller design considers a dynamic model by proposing a remedial measure against the unpredictable bandwidth changes in contention-based multi-access networks (such as shared Ethernet or IEEE 802.11). When compared with the former works/controllers, such a remedy also effectively reduces the instantaneous queue size in a router, and thus significantly improving the queueing delay and packet loss performance.
Finally, the applications of these two controllers on wireless local area networks have been investigated. Their design guidelines/limits are also provided based on our experiences.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OOU.#10393/30976
Date30 April 2014
CreatorsLiu, Jungang
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
TypeThèse / Thesis

Page generated in 0.0023 seconds