As malaria, caused by Plasmodium spp., continues to afflict millions of people worldwide, there is a dire need for the discovery of novel, inexpensive antimalarial drugs. Although there are effective drugs on the market, the consistent development of drug resistant species has decreased their efficacy, further emphasizing that novel therapeutic measures are urgently needed. Natural products provide the most diverse reservoir for the discovery of unique chemical scaffolds with the potential to effectively combat malarial infections, but, due to their complex structures, they often pose extreme challenges to medicinal chemists during pharmacokinetic optimization. In our laboratory we have performed unbiased, cell-based assays of numerous synthetic compounds from chemical libraries enriched with nature-like elements. This screening has led to the discovery of many original chemical scaffolds with promising antimalarial properties. In an attempt to further characterize these scaffolds, the most promising compounds were assayed in order to determine their cytotoxic effects on mammalian cells. In addition, the development of a drug resistant parasite line of Plasmodium falciparum to the most promising compound was done in order to determine the relative probability for parasite resistance development.
Identifer | oai:union.ndltd.org:ucf.edu/oai:stars.library.ucf.edu:honorstheses1990-2015-2774 |
Date | 01 May 2012 |
Creators | Keasler, Eric |
Publisher | STARS |
Source Sets | University of Central Florida |
Language | English |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | HIM 1990-2015 |
Page generated in 0.0017 seconds