Chiasm cells, which include glia and neurons, are generated early before any retinal axon arrives at the midline of the mouse ventral diencephalon. These cells have been shown to affect retinal axon growth and patterning in the optic chiasm. In this study, we used EdU (5-ethyny1-2'-deoxyuridine) for birthdating these chiasm cells, aiming to find out when these cells are generated; then we tried to trace their fates at later stages of development. EdU injection at embryonic day (E) 9.5 to El 1 labeled a number of chiasmatic neurons and radial glial cells at E13, which were immunoreactive for SSEA-1 and RC2, respectively. After colocalization studies, we found that most of these neurons were born as early as E9.5, while a large number of radial glial cells were born as from El 1. Both E9.5-born chiasmatic neurons and Ell-born radial glia decreased by E14-E16; the radial glia even disappeared finally from the midline. Furthermore, we found that some chiasmatic neurons underwent apoptotic cell death as from El 4, and that the radial glia likely differentiated into other cell types after finishing their retinal axon guidance mission at the midline. So it is reasonable that some of the earliest born chiasm cells disappear during development. / During development, retinal ganglion cell axons grow from the eye to the ventral diencephalon, where axons from the two eyes converge and segregate into crossed and uncrossed projections, forming the optic chiasm. This pattern is critical for binocular vision. Although significant progress has been obtained over the past decades, how retinal axon growth and guidance are regulated at the chiasm is largely unknown. Our research will focus on those problems. / In the last part of this thesis, we investigated the retinal axon pathway in the ventral diencephalon of the Sox10Dom mutant embryos and gamma-crystallin mutant embryos. Our findings indicate that Sox10 may not contribute to axon guidance in the developing optic pathway whereas gammaA-crystallin may only play a role in the later uncrossed axons. / N-methyl-D-aspartate (NMDA) receptor is one of the ionotropic glutamate receptors, which are important in synaptic plasticity, apart from implications in dendritic spine remodeling, neurite outgrowth, elongation and branching and glutamate neurotoxicity. There are several subtypes of NMDA receptor channel subunits, NR1, NR2A-D, NR3A&B. The functional diversity of NMDA receptor resides in the different assembly of subunits. In this study, we used RT-PCR to analyze the mRNA expression of all the NMDA receptor subunits in mouse embryos. After that we chose the NR1, NR2B and NR3A antibodies to investigate NMDA receptor subunit expression in the optic pathway during mouse optic pathway development. Using immunohistochemistry, we found that NR1, NR2B and NR3A were expressed in the mouse retina and optic pathway as from E13 when the optic chiasm is forming. Expression of the NMDA receptor subunits were found in the inner cell layers and along retinal axons. Colocalization studies showed that NR1, NR2B and NR3A were localized on the ganglion cells and their axons. In the ventral diencephalon, these subunits were expressed extensively, but NR1 and NR3A were particularly strong along the optic nerve and optic tract. Furthermore, to identify the function of NMDA receptor during optic chiasm development, we cultured E14 retinal explants on laminin and poly-D-ornithine in the presence of the NMDA receptor antagonists MK-801 or Dextrorphan-D-tartrate. These two antagonists can significantly inhibit the retinal axon outgrowth, suggesting that the NMDA receptor promotes retinal axon outgrowth in the retinofugal pathway during optic chiasm development. / Li, Jia. / Adviser: Chan Sun On. / Source: Dissertation Abstracts International, Volume: 73-02, Section: B, page: . / Thesis (Ph.D.)--Chinese University of Hong Kong, 2010. / Includes bibliographical references (leaves 145-158). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [201-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese.
Identifer | oai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_344666 |
Date | January 2010 |
Contributors | Li, Jia, Chinese University of Hong Kong Graduate School. Division of Anatomy. |
Source Sets | The Chinese University of Hong Kong |
Language | English, Chinese |
Detected Language | English |
Type | Text, theses |
Format | electronic resource, microform, microfiche, 1 online resource (x, 158 leaves : ill.) |
Rights | Use of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/) |
Page generated in 0.0025 seconds