Return to search

Applications de l’homologie persistante pour la reconnaissance des formes

L’homologie persistante est un outil fondamental dans la topologie computationnelle. Cette méthode est utilisée pour reconnaître et comparer les formes. Dans ce travail nous étudions d’abord l’homologie persistante dans le cas unidimensionnel d’ordre 0 qu’on appelle aussi fonction de taille. Nous présentons une démonstration du fait que toute fonction de taille peut être représentée comme un ensemble de points et de lignes dans le plan réel, avec des multiplicités. Cela permet une approche algébrique aux fonctions de taille et la construction de nouvelles pseudo distances entre les fonctions de taille pour comparer les formes. Nous calculons ensuite l’homologie persistante unidimensionnelle d’ordre n avec différentes méthodes de filtration de l’espace correspondant à l’histoire d’un complexe croissant. Nous classons un changement topologique qui se produit pendant la croissance soit comme une caractéristique ou un bruit, en fonction de sa durée de vie ou de sa persistance dans la filtration. Une présentation avec des codes barres affiche alors la persistance de ces invariants. L’homologie persistante multidimensionnelle nous permet de soutirer plus d’informations sur les formes en utilisant la fonction de filtration avec des valeurs dans [nombre réel]k. Pour fournir un descripteur de forme concis et complet dans le cas multidimensionnel nous réduisons le calcul de l’homologie persistante multidimensionnelle au calcul de l’homologie persistante ordinaire pour une famille paramétrée de fonctions à valeur dans [nombre réel].

Identiferoai:union.ndltd.org:usherbrooke.ca/oai:savoirs.usherbrooke.ca:11143/10675
Date January 2017
CreatorsHamdi, Chaima
ContributorsKaczynski, Tomasz
PublisherUniversité de Sherbrooke
Source SetsUniversité de Sherbrooke
LanguageFrench
Detected LanguageFrench
TypeMémoire
Rights© Chaima Hamdi

Page generated in 0.0019 seconds