Return to search

Mécanismes moléculaires de la signalisation longue distance dépendante de l’interaction nitrate/cytokinine, chez Arabidopsis thaliana / Molecular basis of the nitrate / cytokinin dependent long distance signaling in Arabidopsis thaliana

Les plantes sont des organismes sessiles se développant dans un environnement hétérogène et fluctuant. La capacité d'acquisition des nutriments par le système racinaire est donc un caractère important pour leur croissance et leur développement.L'azote (N), notamment sous forme nitrate (NO3-), fait partie de ces éléments qui sont limitant pour la croissance des plantes mais aussi très mobiles dans le sol donc fréquemment distribués de façon hétérogène. Les plantes s'adaptent à cette contrainte en modulant le développement racinaire ainsi que la capacité de transport de ce nutriment dans les différentes parties du système racinaire en fonction de la disponibilité en NO3- et du besoin en azote (N) de la plante entière. Cette adaptation repose donc sur la combinaison de deux voies de signalisation, i) une signalisation locale dépendante de la disponibilité en NO3- dans le milieu extérieur ii) une signalisation longue distance (ou systémique) racines-feuilles-racines relative au besoin en N de la plante entière.Toutefois, les bases moléculaires de la signalisation longue distance comme les mécanismes de régulation qui y sont associés ne sont pas totalement connus. Ils reposent sur l'intégration au niveau des parties aériennes de signaux d'origine racinaire, provenant des racines exposées au NO3- mais aussi de celles qui en sont privées. Les parties aériennes jouent alors un rôle majeur dans la modulation de la physiologie et du développement racinaire en condition de disponibilité hétérogène en NO3-. Des études précédentes ont montré que la biosynthèse de cytokinines est essentielle pour la mise en place de cette réponse adaptative. De plus, il est connu qu'après un apport de NO3-, la biosynthèse de cette hormone dans les racines puis son accumulation dans les parties aériennes est augmentée. Dans ce contexte, nous avons émis l'hypothèse que les cytokinines pourraient correspondre à un messager racines/feuilles important pour la signalisation systémique NO3--dépendante.L'objectif de mon projet de thèse consistait à comprendre comment les parties aériennes contrôlent l'acquisition racinaire du NO3- en condition de disponibilité hétérogène en NO3-. Pour reproduire cette condition en laboratoire, le système de 'split-root', permettant de séparer le système racinaire en deux parties isolées pouvant être traitées différemment, a été utilisé pour exposer les plantes à différentes conditions de disponibilité en NO3-. Dans ces différentes conditions, les réponses moléculaires, métaboliques et physiologiques ont été caractérisées chez des plantes sauvages d'Arabidopsis et comparées à celles de mutants affectés dans la biosynthèse, le transport acropetal ou encore dans la perception des cytokinines. La combinaison de ces différentes approches m'a ainsi permis de démontrer que les cytokinines, et plus précisément les trans-zéatines, sont effectivement un messager racines-feuilles crucial pour la mise en place des réponses de la racine à une disponibilité hétérogène en NO3-. De plus, j'ai montré que l'apport hétérogène en NO3- comparé à l'apport homogène entraîne une importante reprogrammation de l'expression génique dans les parties aériennes qui est largement dépendante de ce transport de trans-zéatines vers les feuilles. Enfin, l'intégration de ces données transcriptomiques au sein de réseaux géniques a permis d'identifier des gènes candidats intéressants comme acteurs possibles de la signalisation feuilles-racines. / Plants are sessile organisms growing in a heterogeneous and fluctuating environment. Thus, foraging for nutrients is an important trait for plant growth and development. Nitrogen (N), especially as nitrate (NO3-) form, is one limiting element for plant growth but is also highly mobile in the soil leading to frequent heterogeneity distribution. Plants are managing this constraint through the regulation of root development and NO3- uptake in the different parts of the root system according to the spatial NO3- availability and the N needs of the whole plant. This adaptation relies on a dual signaling pathway involving i) a local signaling related to external NO3- supply and ii) a root-shoot-root long-distance (systemic) signaling related to the plant N needs..However, the molecular basis of the long-distance signaling as well as the regulatory mechanisms associated with, are not fully understood. They rely on the integration at the shoot level of signals originating from both NO3--supplied and N-deprived root parts. Therefore, the shoots have a key role for an efficient adaptation to heterogeneous NO3- environment through the adjustment of root physiology and development. Previously, cytokinin biosynthesis has been shown to be essential for both molecular and morphological root responses to NO3- heterogeneous environment. Moreover, it is known that upon NO3- supply, de novo biosynthesis of this hormone in the roots is increased along with its accumulation in the shoots. In this context, we hypothesized that cytokinins could correspond to an important root to shoot signal involved in NO3--dependent systemic signaling.The main objective of my PhD project was to decipher and understand how the shoots control root NO3- acquisition in response to spatial NO3- heterogeneity. To do so, we used the 'split-root' system, in which physically isolated roots of a same plant are challenged with different NO3- environments. In this framework, we characterized physiological, metabolic and molecular responses of Arabidopsis wild-type plants that we compared to responses of mutants impaired in cytokinin biosynthesis, acropetal transport or perception. The combination of these different approaches allowed me to demonstrate that cytokinins, and especially trans-zeatin species are indeed a root to shoot messenger that is crucial for root responses to spatial NO3- heterogeneity. Moreover, I have shown that NO3- heterogeneous supply compared to homogeneous supply triggers a substantial reprogramming of gene expression in aerial part, which largely depends on this trans-zeatin transport toward the shoots. Finally, the integration of these transcriptomic modifications into gene networks led to the identification of interesting candidate genes to characterize the shoot-to-root signaling.

Identiferoai:union.ndltd.org:theses.fr/2017MONTT096
Date17 November 2017
CreatorsPoitout, Arthur
ContributorsMontpellier, Lacombe, Benoît
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0022 seconds