Diversas situações práticas exigem a análise de series temporais de contagem, que podem apresentar tendência, sazonalidade e efeitos de variáveis explicativas. A motivação do nosso trabalho é a análise de internações diárias por doenças respiratórias para pessoas com mais que 65 anos residentes no município de São Paulo. O efeito de variáveis climáticas e concentrações de poluentes foram incluídos nos modelos e foram usadas as funções seno e cosseno com periodicidade de um ano para explicar o padrão sazonal e obter os efeitos das variáveis climáticas e poluentes controlando essa sazonalidade. Outro aspecto a ser considerado é a inclusão da população nas análises de modo que a interpretação dos efeitos seja para as taxas diárias de internações. Diferentes modelos paramétricos foram propostos para as internações. O mais simples é o modelo de regressão linear para o logaritmo das taxas. Foram ajustados os modelos lineares generalizados (MLG) para as internações com função de ligação logaritmo e com a população como offset, por este modelo permitir o uso das distribuições Poisson e Binomial Negativa, usadas para dados de contagem. Devido à heteroscedasticidade extra, foram propostos modelos GAMLSS incluindo variáveis para explicar o desvio padrão. Foram ajustados modelos ARMA e GARMA, por incluírem uma estrutura de correlação serial. O objetivo desse trabalho é comparar as estimativas, os erros padrões, a cobertura dos intervalos de confiança e o erro quadrático médio para o valor predito segundo os vários modelos e a escolha do modelo mais apropriado, que depende da completa análise de resíduos, geralmente omitida na literatura. O modelo GARMA com distribuição Binomial Negativa apresentou melhor ajuste, pois os erros parecem seguir a distribuição proposta e tem baixa autocorrelação, além de ter tido uma boa cobertura pelo intervalo de confiança e um baixo erro quadrático médio. Também foi analisado o efeito da autocorrelação dos dados nas estimativas nos vários modelos baseado em dados simulados. / Many practical situations require the analysis of time series of counts, which may present trend, seasonality and effects of covariates. The motivation of this work is the analysis of daily hospital admissions for respiratory diseases in people over 65 living in the city of São Paulo. The effect of climatic variables and concentrations of pollutants were included in the models and the sine and cosine functions with annual period were included to explain the seasonal pattern and obtain the effects of pollutants and climatic variables partially controlled by this seasonality. Another aspect to be considered is the inclusion of the population in the analys es in order to interpret the effects based on daily hospitalization rates . Different parametric models have been proposed for hospitalizations. The simplest is the linear regression model for the logarithm of the hospitalization rate. The generalized linear models (GLM) were adjusted for daily admissions with logarithmic link function and the population as offset to consider the Poisson and Negative Binomial distributions for counting data. Due to the extra heteroscedasticity, GAMLSS models were proposed including variables to explain the standard error. Moreover, the ARMA and GARMA models were fitted to include the serial correlation structure. The aim of this work is to compare estimates, standard errors, coverage of confidence intervals and mean squared error of predicted value for the various models and choose the most appropriate model, which depends on a complete analysis of residuals, usually omitted in the literature. The GARMA model with Negative Binomial distribution was the best fit since the errors seem to follow the proposed distribution and they have small values of autocorrelation. Besides, this model had low mean squared error and a good coverage of confidence interval. The effect of autocorrelation of data in the estimates was also analyzed in the setting of several models based on simulated data.
Identifer | oai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-07072014-195809 |
Date | 14 May 2014 |
Creators | Igor André Milhorança |
Contributors | Airlane Pereira Alencar, Adriana Bruscato Bortoluzzo, Clelia Maria de Castro Toloi |
Publisher | Universidade de São Paulo, Estatística, USP, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Source | reponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0022 seconds