Return to search

Weighted quantile regression and oracle model selection. / CUHK electronic theses & dissertations collection

In this dissertation I suggest a new (regularized) weighted quantile regression estimation approach for nonlinear regression models and double threshold ARCH (DTARCH) models. I allow the number of parameters in the nonlinear regression models to be fixed or diverge. The proposed estimation method is robust and efficient and is applicable to other models. I use the adaptive-LASSO and SCAD regularization to select parameters in the nonlinear regression models. I simultaneously estimate the AR and ARCH parameters in the DTARCH model using the proposed weighted quantile regression. The values of the proposed methodology are revealed. / Keywords: Weighted quantile regression, Adaptive-LASSO, High dimensionality, Model selection, Oracle property, SCAD, DTARCH models. / Under regularity conditions, I establish asymptotic distributions of the proposed estimators, which show that the model selection methods perform as well as if the correct submodels are known in advance. I also suggest an algorithm for fast implementation of the proposed methodology. Simulations are conducted to compare different estimators, and a real example is used to illustrate their performance. / Jiang, Xuejun. / Adviser: Xinyuan Song. / Source: Dissertation Abstracts International, Volume: 73-01, Section: B, page: . / Thesis (Ph.D.)--Chinese University of Hong Kong, 2009. / Includes bibliographical references (leaves 86-92). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [201-] System requirements: Adobe Acrobat Reader. Available via World Wide Web.

Identiferoai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_344617
Date January 2009
ContributorsJiang, Xuejun, Chinese University of Hong Kong Graduate School. Division of Statistics.
Source SetsThe Chinese University of Hong Kong
LanguageEnglish
Detected LanguageEnglish
TypeText, theses
Formatelectronic resource, microform, microfiche, 1 online resource (vi, 92 leaves)
RightsUse of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Page generated in 0.0092 seconds