Return to search

Achieving Fairness in 802.11-Based Multi-channel Wireless Mesh Networks

Multi-hop wireless networks based on 802. 11 are being used more widely as an alternative technology for last-mile broadband Internet access. Their benefits include ease of deployment and lower cost. Such networks are not without problems. Current research on such networks aims at a number of challenges, including overcoming capacity limitation and poor fairness. <br /><br /> The focus of our research is for achieving fairness in multi-channel multi-hop wireless networks. First, we review the literature for different methods for representing link-contention areas, and the existing single-channel fairness computational model. Second, we generalize the fairness constraints applied to each link-contention area, defined in the existing single-channel fairness reference model, to multi-channel models. Third, by adopting the concepts of link-usage matrix and medium-usage matrix to represent network topology and flow status, and using Collision Domain theory and Clique Graph theory to represent link-contention area, we develop a computational model to compute optimal MAC-layer bandwidth allocated to each flow in a multi-channel multi-hop WMN. We simulate various network configurations to evaluate the performance of the fairness algorithm based on the above computational model in different scenarios. We have found that in the multi-channel environment, our extension to the Collision Domain model generally provides a more accurate estimation of network capacity. Based on this model, we have extended the source-rate-limiting mechanism, which limits the flow rate to its fair share computed by the computational model. Experimental results that validate these findings are presented in this thesis.

Identiferoai:union.ndltd.org:WATERLOO/oai:uwspace.uwaterloo.ca:10012/2827
Date January 2006
CreatorsLee, Ann
PublisherUniversity of Waterloo
Source SetsUniversity of Waterloo Electronic Theses Repository
LanguageEnglish
Detected LanguageEnglish
TypeThesis or Dissertation
Formatapplication/pdf, 776383 bytes, application/pdf
RightsCopyright: 2006, Lee, Ann. All rights reserved.

Page generated in 0.0017 seconds