As the number of cores integrated on a single chip continues to increase, communication has the potential to become a severe bottleneck to overall system performance. The presence of thread sharing and the distribution of data across cache banks on the chip can result in long distance communication. Long distance communication incurs substantial latency that impacts performance; furthermore, this communication consumes significant dynamic power when packets are switched over many Network-on-Chip (NoC) links and routers. Thread migration can mitigate problems created by long distance communication. This thesis presents Moths, which stands for Mobile Threads. Moths is an efficient run-time algorithm that responds automatically to dynamic NoC traffic patterns, providing beneficial thread migration to decrease overall traffic volume and average packet latency. Moths reduces latency by up to 28.4% (18.0% on average) and traffic volume by up to 24.9% (20.6% on average) across a variety of commercial and scientific benchmarks.
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OTU.1807/25840 |
Date | 12 January 2011 |
Creators | Matthew, Misler |
Contributors | Natalie, Enright Jerger |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | en_ca |
Detected Language | English |
Type | Thesis |
Page generated in 0.0022 seconds