This thesis proposes a convex network utility maximization (NUM) problem that can be solved to optimize a cross-layer network based on user and system defined requirements for quality and link capacity of multimedia applications. The problem can also be converged to a distributed solution using dual decomposition. Current techniques do not address the changing system's requirements for the network in addition to the user's requirements for an application when optimizing a cross-layer network, but rather focus on optimizing a dynamic network to conform to a real-time application or for a specific performance. Optimizing the cross-layer network for the changing system and user requirements allows a more accurate optimization of the overall cross-layer network of any given multi-node, ad-hoc wireless application for data transmission quality and link capacity to meet overall mission demands.
Identifer | oai:union.ndltd.org:wpi.edu/oai:digitalcommons.wpi.edu:etd-theses-2369 |
Date | 15 August 2019 |
Creators | Rahman, Tasnim |
Contributors | Alexander Wyglinski, Advisor, Donald Richard Brown, Committee Member, Scott Pudlewski, Committee Member |
Publisher | Digital WPI |
Source Sets | Worcester Polytechnic Institute |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Masters Theses (All Theses, All Years) |
Page generated in 0.0014 seconds