The process of autophagy is defined as the degradation of cellular cytoplasmic constituents via a lysosomal pathway. Herein I sought to examine the regulation of autophagy in the placental pathologies preeclampsia (PE) and intrauterine growth restriction (IUGR). I hypothesized that the Bcl-2 family proteins Mcl-1L and MtdL regulate placental autophagy and contribute towards dysregulated autophagy in PE. My results demonstrate that Mcl-1L acts to repress autophagy via a Beclin 1 interaction, while MtdL induces autophagy when it interacts with Mcl-1L. My data indicate that while autophagy is elevated in PE, a pathology characterized by oxidative stress, it is decreased in IUGR, a hypoxic pathology. Treatment with sodium nitroprusside to mimic PE caused a decrease in Mcl-1L and an increase in MtdL levels in response to oxidative stress, thereby inducing autophagy. Overall, my data provide insight into the molecular mechanisms contributing to the pathogenesis of preeclampsia.
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OTU.1807/33718 |
Date | 04 December 2012 |
Creators | Kalkat, Manpreet |
Contributors | Caniggia, Isabella |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | en_ca |
Detected Language | English |
Type | Thesis |
Page generated in 0.0021 seconds