Evidence from human amyotrophic lateral sclerosis (ALS) patients and ALS-linked Cu/Zn superoxide dismutase (Cu/Zn-SOD) transgenic mice bearing the mutation of glycine to alanine at position 93 (G93A) suggests that the pro-apoptotic protein prostate apoptosis response-4 (Par-4) might be a critical link in the chain of events leading to motor neuron degeneration. We now report that Par-4 is enriched in synaptosomes and post-synaptic density from the ventral horn of the spinal cord. Levels of Par-4 in synaptic compartments increased significantly during rapid and slow declining stages of muscle strength in hSOD1 G93A mutant mice. In the pre-muscle weakness stage, hSOD1 G93A mutation sensitized synaptosomes from the ventral horn of the spinal cord to increased levels of Par-4 expression following excitotoxic and apoptotic insults. In ventral spinal synaptosomes, Par-4-mediated production of pro-apoptotic cytosolic factor(s) was significantly enhanced by the hSOD1 G93A mutation. RNA interference (RNAi) knockdown of Par-4 inhibited mitochondrial dysfunction and caspase-3 activation induced by G93A mutation in synaptosomes from the ventral horn of the spinal cord, and protected spinal motor neurons from apoptosis. These results identify the synapse as a crucial cellular site for the cell death promoting actions of Par-4 in motor neurons, and suggest that targeted inhibition of Par-4 by RNAi may prove to be a neuroprotective strategy for motor neuron degeneration.
Identifer | oai:union.ndltd.org:ETSU/oai:dc.etsu.edu:etsu-works-19729 |
Date | 01 January 2005 |
Creators | Xie, Jun, Awad, Keytam S., Guo, Qing |
Publisher | Digital Commons @ East Tennessee State University |
Source Sets | East Tennessee State University |
Detected Language | English |
Type | text |
Source | ETSU Faculty Works |
Page generated in 0.0014 seconds