Return to search

Non-negative polynomials on compact semi-algebraic sets in one variable case

Positivity of polynomials, as a key notion in
real algebra, is one of the oldest topics. In a given context, some polynomials can be represented in a form that reveals their positivity immediately, like sums of squares. A large body of literature deals with the question which positive polynomials can be represented in such a way.<p>The milestone in this development was Schm"udgen's solution of the moment problem for compact semi-algebraic sets. In 1991, Schm"udgen proved that if the associated basic closed semi-algebraic set $K_{S}$ is compact, then any polynomial which is strictly positive on $K_{S}$ is contained in the preordering $T_{S}$.<p>Putinar considered a further question: when are `linear representations' possible? He provided the first step in answering this question himself in 1993. Putinar proved if the quadratic module $M_{S}$ is archimedean, any polynomial which is strictly positive on $K_{S}$ is contained in $M_{S}$, i.e., has a linear representation.<p>In the present thesis, we concentrate on the linear representations in the one variable polynomial ring. We first investigate the relationship of the two conditions in Schm"udgen's Theorem and Putinar's Criterion: $K_{S}$ compact and $M_{S}$ archimedean. They are actually equivalent. We find another proof for this result and hereby we can improve Schm"udgen's Theorem in the one variable case.<p>Secondly, we investigate the relationship of $M_{S}$ and $T_{S}$. We use elementary arguments to prove in the one variable case when $K_{S}$ is compact, they are equal.<p>Thirdly, we present Scheiderer's Main Theorem with a detailed proof. Scheiderer established a local-global principle for the polynomials non-negative on $K_{S}$ to be contained in $M_{S}$ in 2003. This principle which we call Scheiderer's Main Theorem here extends Putinar's Criterion.<p>Finally, we consider Scheiderer's Main Theorem in the one variable case, and give a simplified version of this theorem. We also apply this Simple Version of the Main Theorem to give some elementary proofs for existing results.

Identiferoai:union.ndltd.org:USASK/oai:usask.ca:etd-12182006-164624
Date19 December 2006
CreatorsFan, Wei
ContributorsMcQuillan, Ian, Martin, John R., Marshall, Murray, Kuhlmann, Salma, Bremner, Murray R.
PublisherUniversity of Saskatchewan
Source SetsUniversity of Saskatchewan Library
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://library.usask.ca/theses/available/etd-12182006-164624/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to University of Saskatchewan or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0019 seconds