Return to search

Chování nových typů materiálových modelů ve squeeze flow geometrii / Behaviour of new types of material models in a squeeze flow geometry

Investigation of material behaviour in a squeeze flow geometry provides an impor- tant technique in rheology and it is relevant also from the technological point of view (some types of dampers, compression moulding). To our best knowledge, the sque- eze flow has not been solved for fluids-like materials with pressure-dependent material moduli. In the main scope of the present thesis, an incompressible fluid whose visco- sity strongly depends on the pressure is studied in both the perfect-slip and the no-slip squeeze flow. It is shown that such a material model can provide interesting departures compared to the classical model for viscous (Navier-Stokes) fluid even on the level of analytical solutions, which are obtained using some physically relevant simplificati- ons. Numerical simulation of a free boundary problem for the no-slip squeeze flow is then developed in the thesis using body-fitted curvilinear coordinates and spectral collocation method. An interesting behaviour is expected especially in the corners of the computational domain where the stress singularities are normally located. Unfor- tunately, numerical results reveal some fundamental drawbacks related to the physical model and its possible improvement is discussed at the end of the thesis.

Identiferoai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:305090
Date January 2012
CreatorsŘehoř, Martin
ContributorsPrůša, Vít, Hron, Jaroslav
Source SetsCzech ETDs
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/masterThesis
Rightsinfo:eu-repo/semantics/restrictedAccess

Page generated in 0.0019 seconds