Return to search

The Effects of Neuromuscular Electrical Stimulation of the Submental Muscle Group on the Excitability of Corticobulbar Projections

Neuromuscular electrical stimulation (NMES) has become an increasingly popular rehabilitative treatment approach for swallowing disorders (dysphagia). However, its precise effects on swallowing biomechanics and measures of swallowing neurophysiology are unclear. Clearly defined NMES treatment protocols that have been corroborated by thorough empirical research are lacking. The primary objective of this research programme was therefore to establish optimal NMES treatment parameters for the anterior hyo-mandibular (submental) musculature, a muscle group that is critically involved in the oral and pharyngeal phases of swallowing. Based on previous research, the primary hypothesis was that various NMES treatment protocols would have differential effects of either enhancing or inhibiting the excitability of corticobulbar projections to this muscle group. The research paradigm used to test this hypothesis was an evaluation of MEP amplitude and onset latency, recorded in the functional context of volitional contraction of the submental musculature (VC) and contraction of this muscle group during the pharyngeal phase of volitional swallowing (VPS, volitional pharyngeal swallow). Outcome measures were recorded before and at several time points after each NMES treatment trial. This methodology is similar to, but improved upon, research paradigms previously reported.

Changes in corticobulbar excitability in response to various NMES treatment protocols were recorded in a series of experiments. Ten healthy research participants were recruited into a study that evaluated the effects of event-related NMES, whereas 15 healthy research participants were enrolled in a study that investigated the effects of non-event-related NMES. In a third cohort of 35 healthy research participants, task-dependent differences in corticobulbar excitability were evaluated during three conditions of submental muscle contraction: VC, VPS and submental muscle contraction during the pharyngeal phase of reflexive swallowing (RPS, reflexive pharyngeal swallowing).

Event-related NMES induced frequency-depended changes in corticobulbar excitability. NMES administered at 80 Hz facilitated MEP amplitude, whereas NMES at 5 Hz and 20 Hz inhibited MEP amplitude. No changes were observed after NMES at 40 Hz. Maximal excitatory or inhibitory changes occurred 60 min post-treatment. Changes in MEP amplitude in response to event-related NMES were only observed when MEPs were recorded during the VC condition, whereas MEPs recorded during the VPS condition remained unaffected. Non-event-related NMES did not affect MEP amplitude in either of the muscle contraction conditions. Similarly, MEP onset latencies remained unchanged across all comparisons. MEPs were detected most consistently during the VC contraction condition. They were less frequently detected and were smaller in amplitude for the VPS condition and they were infrequently detected during pre-activation by RPS.

The documented results indicate that event-related NMES has a more substantial impact on MEP amplitude than non-event-related NMES, producing excitatory and inhibitory effects. Comparison of MEPs recorded during VC, VPS and RPS suggests that different neural networks may govern the motor control of submental muscle activation during these tasks. This research programme is the first to investigate the effects of various NMES treatment protocols on the excitability of submental corticobulbar projections. It provides important new information for the use of NMES in clinical rehabilitation practices and our understanding of the neural networks governing swallowing motor control.

Identiferoai:union.ndltd.org:canterbury.ac.nz/oai:ir.canterbury.ac.nz:10092/2857
Date January 2009
CreatorsDoeltgen, Sebastian Heinrich
PublisherUniversity of Canterbury. Communication Disorders
Source SetsUniversity of Canterbury
LanguageEnglish
Detected LanguageEnglish
TypeElectronic thesis or dissertation, Text
RightsCopyright Sebastian Heinrich Doeltgen, http://library.canterbury.ac.nz/thesis/etheses_copyright.shtml
RelationNZCU

Page generated in 0.0022 seconds