This thesis presents a damage model developed for the rapid prediction of the vulnerability of a ship concept design to AIREX weapon effects. The model uses simplified physics-based and empirical equations, threat charge size, geometry of the design, and the structure of the design as inputs. The damage volumes are customized to the design being assessed instead using of a single volume defined only by the threat charge size as in previous damage ellipsoid methods. This methodology is validated against a range of charge sizes and a library of notional threats is created. The model uses a randomized hit distribution that is generated using notional threat targeting and the geometry of the design. A Preliminary Arrangement and Vulnerability (PAandV) model is updated with this methodology and used to calculate an Overall Measure of Vulnerability (OMOV) by determining equipment failures and calculating the resulting loss of mission capabilities. A selection of baseline designs from a large design space search in a Concept and Requirements Exploration (CandRE) are assessed using this methodology. / Master of Science
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/82439 |
Date | 09 September 2016 |
Creators | Stark, Sean Aaron |
Contributors | Aerospace and Ocean Engineering, Brown, Alan J., Sajdak, John Anthony, Wang, Kevin Guanyuan |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Detected Language | English |
Type | Thesis |
Format | ETD, application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Page generated in 0.0183 seconds