Return to search

Implementation of MIMO-OFDM System for WiMAX /

Error free transmission is one of the main aims in wireless communications. With the increase in multimedia applications, large amount of data is being transmitted over wireless communications. This requires error free transmission more than ever and to achieve error free transmission multiple antennas can be implemented on both stations i.e. base station and user terminal with proper modulation scheme and coding technique. The 4th generation of wireless communications can be attained by Multiple-Input Multiple-Output (MIMO) in combination with Orthogonal Frequency Division Multiplexing (OFDM). MIMO multiplexing (spatial multiplexing) and diversity (space time coding) having OFDM modulation scheme are the main areas of focus in our thesis study. MIMO multiplexing increases a network capacity by splitting a high signal rate into multiple lower rate streams. MIMO allows higher throughput, diversity gain and interference reduction. It also fulfills the requirement by offering high data rate through spatial multiplexing gain and improved link reliability due to antenna diversity gain. Alamouti Space Time Block Code (STBC) scheme is used with orthogonal designs over multiple antennas which showed simulated results are identical to expected theoretical results. With this technique both Bit Error Rate (BER) and maximum diversity gain are achieved by increasing number of antennas on either side. This scheme is efficient in all the applications where system capacity is limited by multipath fading.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:lnu-12221
Date January 2011
CreatorsGulzar, Muhammad Atif, Nawaz, Rashid, Thapa, Devendra
PublisherLinnéuniversitetet, Institutionen för datavetenskap, fysik och matematik, DFM, Linnéuniversitetet, Institutionen för datavetenskap, fysik och matematik, DFM, Linnéuniversitetet, Institutionen för datavetenskap, fysik och matematik, DFM
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0021 seconds