Return to search

Characterization of a Phased Array Feed Model

Creating accurate software based models of phased array feeds (PAFs) is one of many steps to successfully integrating PAFs with current and future radio telescopes, which is a goal of many groups around the globe. This thesis characterizes the latest models of a 19 element hexagonal PAF of dipoles used by the BYU radio astronomy research group and presents comparisons of these models with experimental data obtained using a prototype array. Experiments were performed at the NRAO site in Green Bank, West Virginia, and utilized the outdoor antenna test range and 20 meter radio telescope. Accurate modeling of the PAF requires modeling the signal and noise characteristics of the array, which is a computationally large problem. It also requires accurate modeling of the noise contribution of the receivers connected to the coupled array, which is something that has only recently been understood. The modeled and measured element receive patterns, array impedance matrix, signal and noise correlation matrices, and efficiencies and sensitivities of the PAF are compared and promising levels of agreement are shown. Modeled sensitivity is 30 to 46% larger than measured.

Identiferoai:union.ndltd.org:BGMYU2/oai:scholarsarchive.byu.edu:etd-2489
Date03 July 2008
CreatorsJones, David A.
PublisherBYU ScholarsArchive
Source SetsBrigham Young University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceTheses and Dissertations
Rightshttp://lib.byu.edu/about/copyright/

Page generated in 0.0019 seconds