Return to search

Macro cavidades em líquidos: visualização e fenomenologia / Macro cavities in liquids: visualization and phenomenology

Devido à importância de cavidades de vapor em meios líquidos, para áreas como transferência de calor e de escoamento em tubos (nos quais elas podem causar sérios danos), o processo de formação e colapso de bolhas tem sido largamente estudado, e boa parte do que ocorre em escala micro já foi reportado. Nos últimos anos, novos estudos no campo têm demonstrado que cavidades de diâmetro não desprezível (chegando a dezenas de centímetros), podem ser geradas em condições controladas. O mecanismo dos experimentos de formação dessas cavidades se aproveita do fato de que substâncias puras (ou quase puras) podem ser mantidas como líquido em temperaturas bem acima das de mudança de fase, e a transição de fase propriamente dita necessita de um mecanismo facilitador ou um ponto de iniciação, de modo que um estado superaquecido pode ser mantido por muito tempo até que essa condição seja alcançada, gerando uma mudança de fase extremamente rápida, e muitas vezes explosiva. As chamadas macro cavidades, geradas por esse processo, possuem uma dinâmica geral de formação e colapso bem semelhante as que ocorrem em escala micro, porém uma série de outros aspectos podem ser observadas nas mesmas, tais como formação de jato central e de película de líquido ascendente junto a parede. Esses aspectos específicos do escoamento, embora descritos em trabalhos anteriores, ainda não foram completamente compreendidos, e se mostram como um desafio na reprodução dos experimentos e na quantificação de força útil gerada. Dessa forma, este estudo se propõem ao melhor entendimento desses detalhes específicos acerca das macro cavidades. Através de filmagens em alta velocidade dos experimentos, e da análise dos dados gerados por essas filmagens, foi realizada uma análise dos mecanismos envolvidos na formação dos jatos centrais e dos filmes ascendentes, comparando a forma como esses efeitos se dão para o caso de macro cavidades com o relatado na bibliografia para casos semelhantes. A fim de facilitar a compreensão da física por trás dos mecanismos de amplificação de ondas, um modelo simplificado da instabilidade de Rayleigh-Taylor aplicado ao fenômeno também foi abordado. / Because of the importance of vapor cavities in liquid, for areas such as heat transfer and pipe flow (in which they can cause serious damage), the process of formation and collapse of bubble has been largely studied, and much of what occurs on a micro scale has already been reported. In recent years new studies in the field have shown that cavities of non-negligible diameter (up to tens of centimeters) can be generated under controlled conditions. The mechanism for the experiments of cavity formation takes advantage of the fact that pure (or near pure) substances can be kept as liquid at temperatures well above the phase change, and the phase transition itself requires a facilitating mechanism or a starting point, such that an overheated state can be maintained for a long time until this condition is reached, generating an extremely rapid, and often explosive, phase change. The so-called macro cavities, generated by this process, have a general dynamics of formation and collapse very similar to those that occur in micro scale, but a number of other aspects can be observed in them, such as formation of central jet and a liquid climbing film close to the wall. These specific aspects of the flow, although described in previous work, have not yet been fully understood, and are shown as a challenge in the reproduction of experiments and in the quantification of useful force generated. Thus, this study proposes to better understand these specific details about the macro cavities. Through high speed filming of the experiments and analysis of the data generated by these films, an analysis was made of the mechanisms involved in the formation of the central jets and the climbing films, comparing the way these events occur in the case of macro cavities, with the reported in the bibliography for similar cases. In order to facilitate the understanding of the physics behind the mechanisms of wave amplification, a simplified model of Rayleigh-Taylor instability applied to the phenomenon was also addressed.

Identiferoai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-12012019-182428
Date20 November 2018
CreatorsPedro Augusto Fernandes Pereira
ContributorsHarry Edmar Schulz, Dawson Tadeu Izola, Iran Eduardo Lima Neto, Carlos Eugenio Pereira, Márcio Ricardo Salla
PublisherUniversidade de São Paulo, Engenharia Mecânica, USP, BR
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis
Sourcereponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0024 seconds