Dans un espace discret, comme l'ensemble des points à coordonnées entières, la modélisation de l'isotropie pose des difficultés théoriques notables. À ce jour, aucune théorie géométrique sur $\ZZ^n$ n'est apte à rendre compte de l'isotropie telle qu'elle est décrite par la géométrie euclidienne. Dans l'optique de contribuer à cette problématique, nous nous intéressons à la conception d'algorithmes capables de donner aux rotations discrètes des propriétés proches de celles de la rotation euclidienne. Ces algorithmes doivent de plus fonctionner à base d'arithmétique entière. Après avoir montré la non-existence de rotation discrète transitive sur $\ZZ^n$, nous introduisons un codage de rotations discrètes que nous relions à la fois à la dynamique symbolique et aux automates cellulaires. Il s'agit alors de mener une étude locale des rotations discrètes. Cette étude se situe au carrefour entre géométrie discrète et systèmes dynamiques symboliques. La pertinence des configurations obtenues est justifiée par l'existence de transducteurs planaires capables d'effectuer des rotations à partir des configurations. Ensuite, afin de réinterpréter ces configurations dans le cadre de la théorie des systèmes dynamiques, nous étendons des notions classiques de cette théorie à la dimension 2. Pour la rotation discrétisée, la dynamique symbolique associée est conjuguée avec un jeu de deux translations orthogonales sur un tore bidimensionnel. Après analyse, nous constatons que les configurations obtenues sont des superpositions de configurations de faible complexité. Cela évoque alors les généralisations planaires des mots sturmiens étudiées entre autres par Valérie Berthé et Laurent Vuillon. Des résultats analogues sont aussi obtenus pour les rotations $3$-transvections. L'analyse les rotations discrètes par le biais de systèmes dynamiques a permis de nombreux résultats : mise en évidence de la quasipériodicité des configurations, calcul de la fréquence des symboles, caractérisation des rotations discrétisées bijectives, ce qui est aussi la réciproque du théorème d'Éric Andrès et Marie-Andrée Jacob. Nous avons aussi étudié les discontinuités du processus de rotation. Ces discontinuités ont lieu pour des angles issus d'un sous-ensemble des angles quadratiques (i.e. les angles charnières). En combinant ces remarques, nous aboutissons à deux algorithmes. Le premier algorithme réalise des rotations sans faire aucun calcul à virgule flottante et sans calculer aucun sinus ni aucun cosinus. Il fonctionne de manière incrémentale et en ordre de complexité optimal. Le second algorithme est une implémentation de la rotation $3$-transvections sur automates cellulaires. D'autres pistes pour la conception d'algorithmes sont mentionnées dans la thèse. En outre, nous nous intéressons aussi aux méthodes substitutives qui engendrent les configurations de rotations. Pour les angles quadratiques, nous montrons que les configurations de rotations sont des entrelacements de configurations autosimilaires; et nous présentons le schéma d'une approche basée sur les graphes de Rauzy pour l'inférence de substitutions planaires. En combinant ces deux approches, nous mettons en avant les éléments essentiels de la démonstration de l'autosimilarité de $C_{\pi/4}$. Les applications potentielles de cette thèse concernent à terme l'implémentation d'algorithmes de rotations pour processeurs graphiques. Elle contribue aussi à l'étude des méthodes algorithmiques pour la modélisation physique en milieu discret de phénomènes isotropes.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00444088 |
Date | 14 September 2006 |
Creators | Nouvel, Bertrand |
Publisher | Ecole normale supérieure de lyon - ENS LYON |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0022 seconds