Return to search

Simulation of the anisotropic material properties in polymers obtained in thermal forming process

In an attempt to improve the quality in finite element analysis of thermoformed components, a method for predicting the thickness distribution is presented. The strain induced anisotropic material behaviour in the amorphous polymers of concern is also taken into account in the method. The method comprises of obtaining raw material data from experiments, followed by a simulation of the vacuum thermoforming process where hyperelastic material behaviour is assumed. The theory of hyperelasticity that was applied was based on the Ogden model and implemented in the FE-software LS-DYNA. Material behaviour from thermoformed prototypes is examined by experiments and implemented together with the mapped results from the thermoforming simulation in a succeeding FE-model. For the latter, the three-parameter Barlat model was suggested, giving the possibility to account for anisotropic material behaviour based on an initial plastic strain.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:hj-40792
Date January 2018
CreatorsBazzi, Ali, Angelou, Andreas
PublisherTekniska Högskolan, Högskolan i Jönköping, JTH, Produktutveckling, Tekniska Högskolan, Högskolan i Jönköping, JTH, Produktutveckling
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0013 seconds