Return to search

Purification of Indoor Air Pollutants Utilizing Hydrophobic Adsorbents

Sick building syndrome (SBS) is a particular concern in places with inadequate ventilation
and frequently attributed to chemical contaminants such as volatile organic compounds (VOCs)released from indoor sources that are frequently encountered in everyday life such as adhesives, carpeting, upholstery, manufactured wood products, copy machines, pesticides, cleaning agents inside buildings, plumbing vents, and painting. Furthermore, it is a major issue for modern human beings who spend most of their time indoors or must stay indoors for self-isolation due to special circumstances such as the coronavirus disease-19 (COVID-19) pandemic that occurred in 2019 and 2020. Main indoor VOCs are trichloroethylene (TCE), benzene, toluene, and para-xylene (p-xylene). In general, these compounds are not present in indoor spaces at acute concentrations, but prolonged exposure to these compounds can have chronic health effects such as allergic sensitization, increased cancer risks, and respiratory diseases.
In this study, the adsorption process with various advantages has been applied to remove
VOC’s using commercially available hydrophobic adsorbents. The hydrophobic adsorbents can contribute to reducing the possibility of chemical adsorption (chemisorption) of moisture from the air, which can decrease the capacity of adsorbent by clogging the pores. The adsorption of these major VOCs was investigated in this work for three major types of industrial hydrophobic adsorbents: activated carbons, zeolites, and polymer.
This study will show the investigation into finding the most promising hydrophobic
adsorbent for removal of TCE, benzene, toluene, and p-xylene, which are the main VOCs found indoors. The promising hydrophobic adsorbent has been determined by comparing Henry’s law constants and heat of adsorption values for the different adsorbents, which were estimated by using a concentration pulse chromatographic technique by utilizing a gas chromatograph equipped with a flame ionization detector.
For all adsorbents, Henry’s law constants at room temperature of p-xylene were always
the highest followed by toluene, benzene, and TCE. For all adsorbates, Henry’s law constants at room temperature of AC BPL and HiSiv 3000 were higher than the other hydrophobic adsorbents.
For a developing modern society dealing with a pandemic, this study can contribute to
producing the optimized gas masks and indoor filters for the removal of indoor air pollutants,
which can help people who suffer from SBS. It can also help society for taking preventative actions towards dealing with SBS.

Identiferoai:union.ndltd.org:uottawa.ca/oai:ruor.uottawa.ca:10393/41613
Date05 January 2021
CreatorsYun, Ji Sub
ContributorsTezel, F. Handan
PublisherUniversité d'Ottawa / University of Ottawa
Source SetsUniversité d’Ottawa
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Formatapplication/pdf

Page generated in 0.0028 seconds