Return to search

TCE Removal Utilizing Coupled Zeolite Sorption and Advanced Oxidation

Trichloroethylene (TCE) is one of the most common groundwater pollutants in the United States. The EPA estimated that between 9% and 34% of the drinking water sources in the United States may contain TCE. The United States Environmental Protection Agency set a maximum contaminant level at 5 µg/L of trichloroethylene for drinking water. This study investigated the feasibility of removing TCE from water by sorption to ZSM-5 and advanced oxidation to destroy the TCE on the zeolite. Aqueous oxidation of TCE with Fenton's reagent was shown to be efficient for the destruction of TCE. The quantified by-products were cis-DCE and trans-DCE. ZSM-5 rapidly removed TCE from water. A Freundlich isotherm was created for the uptake of TCE by ZSM-5. Once TCE was sorbed to ZSM-5, preliminary experiments showed that the oxidation was able to destroy the TCE while producing the same by-products.

Identiferoai:union.ndltd.org:wpi.edu/oai:digitalcommons.wpi.edu:etd-theses-1430
Date28 April 2003
CreatorsHawley, Harmonie A
ContributorsJohn A. Bergendahl, Advisor, ,
PublisherDigital WPI
Source SetsWorcester Polytechnic Institute
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceMasters Theses (All Theses, All Years)

Page generated in 0.0018 seconds