Return to search

Application Of Isokinetic Sampling Technique For Local Solid Densities In Upward Liquid-solid Flows Through An Annulus

In this study, radial solid density distributions in upward flowing water-feldspar mixtures through a concentric annulus were investigated. Local solid density measurements were performed at a test cross-section in the fully developed flow region of a concentric annulus, which is a part of a closed-loop system consisting of a head tank, a variable speed slurry pump, an orificemeter, a heat exchanger, an annulus, a temperature probe, and a drain line. The solid particles with mean diameters of 72 and 138 &amp / #61549 / m at two different feed solid concentrations of 1 and 2 % v/v were used in the prepared slurries. The dependent variables being local solid density, local mixture velocity, and axial frictional pressure drop along the test-section, an experimental work was performed to obtain the radial solid density profiles and axial pressure gradients at different operating conditions.

To determine the local solid densities, a sampling probe was used. At the beginning, this probe was used as a pitot tube to measure the local velocities in the test cross-section. Making use of these data, local solid densities were measured with the same probe under isokinetic and nonisokinetic conditions to compare both.
For this purpose, an isokinetic sampling unit was designed and constructed to withdraw the samples under isokinetic flow conditions, at which the sampling velocity in the probe equated to the true flow velocity in the annulus very closely. The required constant back-pressure was supplied by pressurized N2 gas to equate these velocities to each other. The amounts of solids in the slurry samples collected at seven different radial locations in the test area under isokinetic and non-isokinetic conditions were determined by the gravimetric method.

Local solid densities showed more uniform trends at the feed solid concentration of 1% v/v than those at 2% v/v. Increasing the feed solid concentration and particle size changed the shape of these profiles. The obtained local solid densities were generally higher near the outer wall than those near the inner wall / this result was consistent with the literature. As a general trend, local solid densities showed a decreasing trend at around a dimensionless radial distance of &amp / #61548 / =0.4, where the slurry velocity profile had its maximum value. It was observed that the two-phase axial frictional pressure gradients along the test section in the fully developed flow region increased with increasing feed solid concentration and the particle size at a constant slurry flow rate.

Isokinetic sampling results showed that the local solid densities increased consistently with the increasing slurry velocity at all radial distances in the annular gap, while this trend was not observed clearly in the non-isokinetic measurements. Also the variations of the local solid densities along the radial distance were more obvious in the isokinetic results while these variations were obscured under nonisokinetic conditions by the experimental error at a higher level.

Identiferoai:union.ndltd.org:METU/oai:etd.lib.metu.edu.tr:http://etd.lib.metu.edu.tr/upload/1089796/index.pdf
Date01 September 2003
CreatorsCamci, Gulden
ContributorsOzbelge, Tulay A.
PublisherMETU
Source SetsMiddle East Technical Univ.
LanguageEnglish
Detected LanguageEnglish
TypeM.S. Thesis
Formattext/pdf
RightsTo liberate the content for public access

Page generated in 0.0092 seconds